布勒齐著的《泛函分析索伯列夫空间和偏微分方程(英文版)》提出了一个连贯的、确切的、统一的方法将两个来自不同领域的元素——泛函分析和偏微分方程,结合在一起,旨在为具有良好实分析背景的学生提供帮助。通过详细地分析一维PDEs的简单案例,即ODEs,一个对初学者来说比较简单的方法,该书展示了从泛函分析到偏微分方程的平滑过渡。
图书 | 泛函分析索伯列夫空间和偏微分方程(英文版) |
内容 | 编辑推荐 布勒齐著的《泛函分析索伯列夫空间和偏微分方程(英文版)》提出了一个连贯的、确切的、统一的方法将两个来自不同领域的元素——泛函分析和偏微分方程,结合在一起,旨在为具有良好实分析背景的学生提供帮助。通过详细地分析一维PDEs的简单案例,即ODEs,一个对初学者来说比较简单的方法,该书展示了从泛函分析到偏微分方程的平滑过渡。 目录 Preface The Hahn-Banach Theorems. Introduction to the Theory of Conjugate Convex Functions 1.1 The Analytic Form of the Hahn-Banach Theorem: Extension of Linear Functionals 1.2 The Geometric Forms of the Hahn-Banach Theorem: Separation of Convex Sets 1.3 The Bidual E. Orthogonality Relations 1.4 A Quick Introduction to the Theory of Conjugate Convex Functions Comments on Chapter 1 Exercises for Chapter 1 2 The Uniform Boundedness Principle and the Closed Graph Theorem 2.1 The Baire Category Theorem 2.2 The Uniform Boundedness Principle 2.3 The Open Mapping Theorem and the Closed Graph Theorem 2.4 Complementary Subspaces. Right and Left inve.rtibility of Linear Operators 2.5 Orthogonality Revisited 2.6 An Introduction to Unbounded Linear Operators. Definition of the Adjoint 2.7 A Characterization of Operators with Closed Range. A Characterization of Surjective Operators Comments on Chapter 2 Exercises for Chapter 2 Weak Topologies. Reflexive Spaces. Separable Spaces. Uniform Convexity 3.1 The Coarsest Topology for Which a Collection of Maps Becomes Continuous 3.2 Definition and Elementary Properties of the Weak Topology a(E, E*) 3.3 Weak Topology, Convex Sets, and Linear Operators 3.4- The Weak* Topology tr (E', E) 3.5 Reflexive Spaces 3.6 Separable Spaces 3.7 Uniformly Convex Spaces Comments on Chapter 3 Exercises for Chapter 3 4 Lp Spaces 4.1 Some Results about Integration That Everyone Must Know 4.2 Definition and Elementary Properties of Lp Spaces 4.3 Reflexivity. Separability. Dual of Lp 4.4 Convolution and regularization 4.5 Criterion for Strong Compactness in Lp Comments on Chapter 4 Exercises for Chapter 4 5 Hilbert Spaces 5.1 Definitions and Elementary Properties. Projection onto a Closed Convex Set 5.2 The Dual Space of a Hilbert Space 5.3 The Theorems of Stampacchia and Lax-Milgram 5.4 Hilbert Sums. Orthonormal Bases Comments on Chapter 5 Exercises for Chapter 5 Compact Operators. Spectral Decomposition of Self-Adjoint Compact Operators 6.1 Definitions. Elementary Properties. Adjoint 6.2 The Riesz-Fredholm Theory 6.3 The Spectrum of a Compact Operator 6.4 Spectral Decomposition of Self-Adjoint Compact Operators Comments on Chapter 6 Exercises for Chapter 6 The Hille--Yosida Theorem 7.1 Definition and Elementary Properties of Maximal Monotone Operators 7.2 Solution of the Evolution Problem du "37 + Au = 0 on [0, +cx), u(0) = u0. Existence and uniqueness 7.3 Regularity 7.4 The Self-Adjoint Case Comments on Chapter 7 8 Sobolev Spaces and the Variational Formulation of Boundary Value Problems in One Dimension 8.1 Motivation 8.2 The Sobolev Space Wl'P(l) 8.3 The Space W 'p 8.4 Some Examples of Boundary Value Problems 8.5 The Maximum Principle 8.6 Eigenfunctions and Spectral Decomposition Comments on Chapter 8 Exercises for Chapter 8 9 Sobolev Spaces and the Variational Formulation of Elliptic Boundary Value Problems in N Dimensions 9.1 Definition and Elementary Properties of the Sobolev Spaces WI,P() 9.2 Extension Operators 9.3 Sobolev Inequalities 9.4 The Space W'P(f2) 9.5 Variational Formulation of Some Boundary Value Problems 9.6 Regularity of Weak Solutions 9.7 The Maximum Principle 9.8 Eigenfunctions and Spectral Decomposition Comments on Chapter 9 . 10 Evolution Problems: The Heat Equation and the Wave Equation .. I0.1 The Heat Equation: Existence, Uniqueness, and Regularity 10.2 The Maximum Principle 10.3 The Wave Equation Comments on Chapter 10 11 Miscellaneous Complements 11.1 Finite-Dimensional and Finite-Codimensional Spaces 11.2 Quotient Spaces 11.3 Some Classical Spaces of Sequences 11.4 Banach Spaces over C: What Is Similar and What Is Different?.. Solutions of Some Exercises Problems Partial Solutions of the Problems Notation References Index |
标签 | |
缩略图 | ![]() |
书名 | 泛函分析索伯列夫空间和偏微分方程(英文版) |
副书名 | |
原作名 | |
作者 | (美)布勒齐 |
译者 | |
编者 | |
绘者 | |
出版社 | 世界图书出版公司 |
商品编码(ISBN) | 9787510096778 |
开本 | 24开 |
页数 | 599 |
版次 | 1 |
装订 | 平装 |
字数 | 500 |
出版时间 | 2015-07-01 |
首版时间 | 2015-07-01 |
印刷时间 | 2015-07-01 |
正文语种 | 英 |
读者对象 | 普通大众 |
适用范围 | |
发行范围 | 公开发行 |
发行模式 | 实体书 |
首发网站 | |
连载网址 | |
图书大类 | 科学技术-自然科学-数学 |
图书小类 | |
重量 | 0.74 |
CIP核字 | 2015152955 |
中图分类号 | O177 |
丛书名 | |
印张 | 26 |
印次 | 1 |
出版地 | 北京 |
长 | 223 |
宽 | 147 |
高 | 24 |
整理 | |
媒质 | 图书 |
用纸 | 普通纸 |
是否注音 | 否 |
影印版本 | 原版 |
出版商国别 | CN |
是否套装 | 单册 |
著作权合同登记号 | 01-2015-2537 |
版权提供者 | |
定价 | |
印数 | |
出品方 | |
作品荣誉 | |
主角 | |
配角 | |
其他角色 | |
一句话简介 | |
立意 | |
作品视角 | |
所属系列 | |
文章进度 | |
内容简介 | |
作者简介 | |
目录 | |
文摘 | |
安全警示 | 适度休息有益身心健康,请勿长期沉迷于阅读小说。 |
随便看 |
|
兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。