首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 Keras深度学习与神经网络
内容
内容推荐
本书从人工智能导论入手,阐述人工智能的发展及现状,重点介绍了机器学习和神经网络基础、反向传播原理、卷积神经网络和循环神经网络等内容。本书内容由浅入深,循序渐进,从神经元和感知机入手,逐步讲解深度学习中神经网络基础、反向传播以及更深层次的卷积神经网络、循环神经网络。本书知识体系完整,内容覆盖面广,介绍了深度学习中常用的模型和算法,助力读者全方位掌握深度学习的相关知识。
本书可作为高等院校计算机等相关专业的教材,也可供人工智能领域的技术人员学习使用,还可以作为人工智能研究人员的参考用书。
作者简介
肖睿,课工场创始人,北京大学教育学博士,北京大学软件学院特约讲师,北京大学学习科学实验室特约顾问。作为北大青鸟 Aptech 的联合创始人,历任学术总监、研究院院长、公司副总裁等核心岗位,拥有20多年的IT职业教育产品管理和企业管理经验。于2015年创办课工场,兼任总经理,旨在为大学生提供更可靠的 IT 就业教育及服务。
目录
目录 第1章 人工智能导论
任务 1.1:了解人工智能发展历程
人工智能的发展历程
任务 1.2:理解人工智能、机器学习、深度学习.
1.2.1 人工智能,机器学习和深度学习
1.2.2 深度学习的发展
任务 1.3:了解深度学习的应用情况
1.3.1 深度学习的应用情况
本章小结
本章习题
第 2 章 深度学习流程
任务 2.1:什么是机器学习
2.1.1 机器学习
2.1.2 机器如何学习
任务 2.2:理解回归与分类
2.2.1 回归
2.2.2 分类
任务 2.3:了解深度学习工作过程
深度学习工作过程
本章小结
本章习题
第 3 章 神经网络基础
任务 3.1:什么是人工神经元
3.1.1 生物神经元
3.1.2 人工神经元
任务 3.2:理解激活函数的意义
3.2.1 激活函数的意义
3.2.2 激活函数种类
任务 3.3:掌握基础的神经网络结构
3.3.1 感知机模型
3.3.2 全连接神经网络
任务 3.4:了解什么是损失函数
3.4.1 损失函数的意义
3.4.2 损失函数的种类
本章小结
本章习题
第 4 章 反向传播原理.
任务 4.1:计算神经网络的输出
前向传播计算
任务 4.2:掌握反向传播算法
4.2.1 反向传播算法的意义
4.2.2 反向传播算法的计算
任务 4.3:掌握梯度下降算法
4.3.1 梯度下降概述
4.3.2 梯度下降的形式
4.3.3 学习率的作用
任务 4.4:使用 Python 实现反向传播算法
反向传播的 Python 实现
本章小结
本章习题
第 5 章 Keras 与环境配置
任务 5.1:深度学习开发环境的配置
5.1.1 Python 开发环境搭建
5.1.2 Keras 与 TensorFlow 安装
任务 5.2:快速开始 Keras
5.2.1 为什么选择 Keras
5.2.2 快速开始 Keras
任务 5.3:掌握顺序模型 Sequential API
5.3.1 Sequential API
任务 5.4:认识函数式模型 Funtional API
Funtional API
本章小结
本章习题
第 6 章 深度神经网络手写体识别
任务 6.1:理解 Softmax 回归模型
6.1.1 Softmax 回归模型
6.1.2 交叉熵损失函数
任务 6.2:使用手写体识别数据集 MNIST
图像分类数据集-MNIST
任务 6.3:深度神经网络解决图像分类问题
多层感知机结合 Softmax 完成手写体识别
任务 6.4:模型评估
6.4.1 选择一个可靠的模型
6.4.2 欠拟合和过拟合
本章小结
本章习题
第 7 章 神经网络优化
任务 7.1:范数正则化避免过拟合
范数正则化
任务 7.2:丢弃法正则化避免过拟合
丢弃法
任务 7.3:掌握改进的优化算法
7.3.1 深度学习与优化
7.3.2 小批量随机梯度下降算法改进
本章小结
本章习题
第 8 章 卷积神经网络
任务 8.1:初识卷积神经网络
8.1.1 卷积概述
8.1.2 与全连接网络对比
任务 8.2:卷积运算
8.2.1 卷积核
8.2.2 填充和步幅
8.2.3 多通道卷积
8.2.4 池化层
任务 8.3:LeNet 实现物体分类
8.3.1 LeNet-开山之作
8.3.2 LeNet 进行物体分类
本章小结
本章习题
第 9 章 卷积神经网络经典结构
任务 9.1:训练深度卷积神经网络
9.1.1 AlexNet
9.1.2 图像增广
9.1.3 实现 AlexNet
任务 9.2:进一步增加网络的深度
9.2.1 VGG 系列
9.2.2 应用 VGG16 提取特征
任务 9.3:认识并行结构的卷积网络
9.3.1 GoogLeNet
9.3.2 Inception 结构块
9.3.3 1×1 卷积核
9.3.4 GoogLeNet 结构
任务 9.4:把网络深度提升至上百层
9.4.1 深度残差网络
9.4.2 稠密连接网络
本章小结
本章习题
第 10 章 循环神经网络
任务 10.1:对时序数据建模
10.1.1 时序数据
10.1.2 循环神经网络
任务 10.2:增加循环神经网络的记忆
10.2.1 长短期记忆网络原理
10.2.2 Keras 实现 LSTM
任务 10.3:优化长短期记忆网络
10.3.1 重置门与更新门
本章小结
本章习题
导语
1.以操作实践为学习的切入点,而不是直接切入理论讲解;
2.以任务为驱动,贯穿知识内容;
3.充分考虑学习者的认知曲线,由浅入深,边讲边练边切入理论知识;
4.通过项目实训训练技能的综合使用能力。
主题词
人工智能 深度学习 神经网络 Keras
标签
缩略图
书名 Keras深度学习与神经网络
副书名
原作名
作者 肖睿 程鸣萱
译者
编者
绘者
出版社 人民邮电出版社
商品编码(ISBN) 9787115564788
开本 16开
页数 0
版次 01
装订 平装
字数 249千字
出版时间 2022-08
首版时间 2022-08
印刷时间
正文语种 中文版
读者对象
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类 计算机-更多
图书小类
重量
CIP核字
中图分类号 TP18
丛书名
印张 13.000
印次 01
出版地 北京市
整理
媒质
用纸
是否注音
影印版本
出版商国别 中国
是否套装
著作权合同登记号
版权提供者
定价
印数 2300
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/17 21:16:52