本书作者Jean-Pierre Demailly 教授是法国格勒诺布尔第一大学数学系教授,著名数学家,1994年获选为法国科学院院士。本书是全英文版,讲述了代数几何中的分析方法,该方法广泛地应用于线性系列,代数向量丛的消失定理等。
图书 | 代数几何中的解析方法(精) |
内容 | 编辑推荐 本书作者Jean-Pierre Demailly 教授是法国格勒诺布尔第一大学数学系教授,著名数学家,1994年获选为法国科学院院士。本书是全英文版,讲述了代数几何中的分析方法,该方法广泛地应用于线性系列,代数向量丛的消失定理等。 内容推荐 This volume is an expansion of lectures given by the author at the Park City Mathematics Institute in 2008 as well as in other places. The main purpose of the book is to describe analytic techniques which are useful to study questions such as linear series, multiplier ideals and vanishing theorems for algebraic vector bundles. The exposition tries to be as condensed as possible, assuming that the reader is already somewhat acquainted with the basic concepts pertaining to sheaf theory,homological algebra and complex differential geometry. In the final chapters, some very recent questions and open problems are addressed, for example results related to the finiteness of the canonical ring and the abundance conjecture, as well as results describing the geometric structure of Kahler varieties and their positive cones. 目录 Introduction Chapter 1. Preliminary Material: Cohomology, Currents 1.A. Dolbeault Cohomology and Sheaf Cohomology 1.B. Plurisuhharmonic Functions 1.C. Positive Currents Chapter 2. Lelong numbers and Intersection Theory 2.A. Multiplication of Currents and Monge-Ampere Operators 2.B. Lelong Numbers Chapter 3. Hermitian Vector Bundles,Connections and Curvature Chapter 4. Bochner Technique and Vanishing Theorems 4.A. Laplace-Beltrami Operators and Hodge Theory 4.B. Serre Duality Theorem 4.CBochner-Kodaira-Nakano Identity on Kahler Manifolds 4.D. Vanishing Theorems Chapter 5. L2 Estimates and Existence Theorems 5.A. Basic L2 Existence Theorems 5.B. Multiplier Ideal Sheaves and Nadel Vanishing Theorem Chapter 6. Numerically Effective andPseudo-effective Line Bundles 6.A. Pseudo-effective Line Bundles and Metrics with Minimal Singularities 6.B. Nef Line Bundles 6.C. Description of the Positive Cones 6.D. The Kawamat~-Viehweg Vanishing Theorem 6.E. A Uniform Global Generation Property due to Y.T. Siu Chapter 7. A Simple Algebraic Approach to Fujita's Conjecture Chapter 8. Holomorphic Morse Inequalities 8.A. General Analytic Statement on Compact Complex Manifolds 8.B. Algebraic Counterparts of the Holomorphic Morse Inequalities 8.C. Asymptotic Cohomology Groups 8.D. Transcendental Asymptotic Cohomology Functions Chapter 9. Effective Version of Matsusaka's Big Theorem Chapter 10. Positivity Concepts for Vector Bundles Chapter 11. Skoda's L2 Estimates for Surjective Bundle Morphisms 11.A. Surjectivity and Division Theorems 11.B. Applications to Local Algebra: the Brianqon-Skoda Theorem Chapter 12. The Ohsawa-Takegoshi L2 Extension Theorem 12.A. The Basic a Priori Inequality 12.B. Abstract L2 Existence Theorem for Solutions of O-Equations 12.C. The L2 Extension Theorem 12.D. Skoda's Division Theorem for Ideals of Holomorphic Functions Chapter 13. Approximation of Closed Positive Currents by Analytic Cycles 13.A. Approximation of Plurisubharmonic Functions Via Bergman kernels 13.B. Global Approximation of Closed (1,1)-Currents on a Compact Complex Manifold 13.C. Global Approximation by Divisors 13.D. Singularity Exponents and log Canonical Thresholds 13.E. Hodge Conjecture and approximation of (p, p)- currents Chapter 14. Subadditivity of Multiplier Ideals and Fujita's Approximate Zariski Decomposition Chapter 15. Hard Lefschetz Theorem with Multiplier Ideal Sheaves 15.A. A Bundle Valued Hard Lefschetz Theorem 15.B. Equisingular Approximations of Quasi Plurisubharmonic Functions 15.C. A Bochner Type Inequality 15.D. Proof of Theorem 15.1 15.E. A Counterexample Chapter 16. Invariance of Plurigenera of Projective Varieties Chapter 17. Numerical Characterization of the K~ihler Cone 17.A. Positive Classes in Intermediate (p, p)-bidegrees 17.B. Numerically Positive Classes of Type (1,1) 17.C. Deformations of Compact K~hler Manifolds Chapter 18. Structure of the Pseudo-effective Cone and Mobile Intersection Theory 18.A. Classes of Mobile Curves and of Mobile (n- 1, n-1)-currents 18.B. Zariski Decomposition and Mobile Intersections 18.C. The Orthogonality Estimate 18.D. Dual of the Pseudo-effective Cone 18.E. A Volume Formula for Algebraic (1,1)-Classes on Projective Surfaces Chapter 19. Super-canonical Metrics and Abundance 19.A. Construction of Super-canonical Metrics 19.B. Invariance of Plurigenera and Positivity of Curvature of Super-canonical Metrics 19.C. Tsuji's Strategy for Studying Abundance Chapter 20. Siu's Analytic Approach and Paun's Non Vanishing Theorem References |
标签 | |
缩略图 | ![]() |
书名 | 代数几何中的解析方法(精) |
副书名 | |
原作名 | |
作者 | (法)德马依 |
译者 | |
编者 | |
绘者 | |
出版社 | 高等教育出版社 |
商品编码(ISBN) | 9787040305319 |
开本 | 16开 |
页数 | 231 |
版次 | 1 |
装订 | 精装 |
字数 | 350 |
出版时间 | 2010-09-01 |
首版时间 | 2010-09-01 |
印刷时间 | 2010-09-01 |
正文语种 | 英 |
读者对象 | 研究人员,普通成人 |
适用范围 | |
发行范围 | 公开发行 |
发行模式 | 实体书 |
首发网站 | |
连载网址 | |
图书大类 | 科学技术-自然科学-数学 |
图书小类 | |
重量 | 0.484 |
CIP核字 | |
中图分类号 | O187 |
丛书名 | |
印张 | 15 |
印次 | 1 |
出版地 | 北京 |
长 | 246 |
宽 | 175 |
高 | 15 |
整理 | |
媒质 | 图书 |
用纸 | 普通纸 |
是否注音 | 否 |
影印版本 | 原版 |
出版商国别 | CN |
是否套装 | 单册 |
著作权合同登记号 | |
版权提供者 | |
定价 | |
印数 | |
出品方 | |
作品荣誉 | |
主角 | |
配角 | |
其他角色 | |
一句话简介 | |
立意 | |
作品视角 | |
所属系列 | |
文章进度 | |
内容简介 | |
作者简介 | |
目录 | |
文摘 | |
安全警示 | 适度休息有益身心健康,请勿长期沉迷于阅读小说。 |
随便看 |
|
兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。