首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 代数几何中的解析方法(精)
内容
编辑推荐

本书作者Jean-Pierre Demailly 教授是法国格勒诺布尔第一大学数学系教授,著名数学家,1994年获选为法国科学院院士。本书是全英文版,讲述了代数几何中的分析方法,该方法广泛地应用于线性系列,代数向量丛的消失定理等。

内容推荐

This volume is an expansion of lectures given by the author at the Park City Mathematics Institute in 2008 as well as in other places. The main purpose of the book is to describe analytic techniques which are useful to study questions such as linear series, multiplier ideals and vanishing theorems for algebraic vector bundles. The exposition tries to be as condensed as possible, assuming that the reader is already somewhat acquainted with the basic concepts pertaining to sheaf theory,homological algebra and complex differential geometry. In the final chapters, some very recent questions and open problems are addressed, for example results related to the finiteness of the canonical ring and the abundance conjecture, as well as results describing the geometric structure of Kahler varieties and their positive cones.

目录

Introduction

Chapter 1. Preliminary Material: Cohomology, Currents

1.A. Dolbeault Cohomology and Sheaf Cohomology

1.B. Plurisuhharmonic Functions

1.C. Positive Currents

Chapter 2. Lelong numbers and Intersection Theory

2.A. Multiplication of Currents and Monge-Ampere Operators

2.B. Lelong Numbers

Chapter 3. Hermitian Vector Bundles,Connections and Curvature

Chapter 4. Bochner Technique and Vanishing Theorems

4.A. Laplace-Beltrami Operators and Hodge Theory

4.B. Serre Duality Theorem

4.CBochner-Kodaira-Nakano Identity on Kahler Manifolds

4.D. Vanishing Theorems

Chapter 5. L2 Estimates and Existence Theorems

5.A. Basic L2 Existence Theorems

5.B. Multiplier Ideal Sheaves and Nadel Vanishing Theorem

Chapter 6. Numerically Effective andPseudo-effective Line Bundles

6.A. Pseudo-effective Line Bundles and Metrics with Minimal Singularities

6.B. Nef Line Bundles

6.C. Description of the Positive Cones

6.D. The Kawamat~-Viehweg Vanishing Theorem

6.E. A Uniform Global Generation Property due to Y.T. Siu

Chapter 7. A Simple Algebraic Approach to Fujita's Conjecture

Chapter 8. Holomorphic Morse Inequalities

8.A. General Analytic Statement on Compact Complex Manifolds

8.B. Algebraic Counterparts of the Holomorphic Morse Inequalities

8.C. Asymptotic Cohomology Groups

8.D. Transcendental Asymptotic Cohomology Functions

Chapter 9. Effective Version of Matsusaka's Big Theorem

Chapter 10. Positivity Concepts for Vector Bundles

Chapter 11. Skoda's L2 Estimates for Surjective Bundle Morphisms

11.A. Surjectivity and Division Theorems

11.B. Applications to Local Algebra: the Brianqon-Skoda Theorem

Chapter 12. The Ohsawa-Takegoshi L2 Extension Theorem

12.A. The Basic a Priori Inequality

12.B. Abstract L2 Existence Theorem for Solutions of O-Equations

12.C. The L2 Extension Theorem

12.D. Skoda's Division Theorem for Ideals of Holomorphic Functions

Chapter 13. Approximation of Closed Positive Currents

by Analytic Cycles

13.A. Approximation of Plurisubharmonic Functions Via Bergman kernels

13.B. Global Approximation of Closed (1,1)-Currents on a Compact Complex Manifold

13.C. Global Approximation by Divisors

13.D. Singularity Exponents and log Canonical Thresholds

13.E. Hodge Conjecture and approximation of (p, p)- currents

Chapter 14. Subadditivity of Multiplier Ideals

and Fujita's Approximate Zariski Decomposition

Chapter 15. Hard Lefschetz Theorem

with Multiplier Ideal Sheaves

15.A. A Bundle Valued Hard Lefschetz Theorem

15.B. Equisingular Approximations of Quasi Plurisubharmonic Functions

15.C. A Bochner Type Inequality

15.D. Proof of Theorem 15.1

15.E. A Counterexample

Chapter 16. Invariance of Plurigenera of Projective Varieties

Chapter 17. Numerical Characterization of the K~ihler Cone

17.A. Positive Classes in Intermediate (p, p)-bidegrees

17.B. Numerically Positive Classes of Type (1,1)

17.C. Deformations of Compact K~hler Manifolds

Chapter 18. Structure of the Pseudo-effective Cone

and Mobile Intersection Theory

18.A. Classes of Mobile Curves and of Mobile (n- 1, n-1)-currents

18.B. Zariski Decomposition and Mobile Intersections

18.C. The Orthogonality Estimate

18.D. Dual of the Pseudo-effective Cone

18.E. A Volume Formula for Algebraic (1,1)-Classes on Projective Surfaces

Chapter 19. Super-canonical Metrics and Abundance

19.A. Construction of Super-canonical Metrics

19.B. Invariance of Plurigenera and Positivity of Curvature of Super-canonical Metrics

19.C. Tsuji's Strategy for Studying Abundance

Chapter 20. Siu's Analytic Approach and Paun's

Non Vanishing Theorem

References

标签
缩略图
书名 代数几何中的解析方法(精)
副书名
原作名
作者 (法)德马依
译者
编者
绘者
出版社 高等教育出版社
商品编码(ISBN) 9787040305319
开本 16开
页数 231
版次 1
装订 精装
字数 350
出版时间 2010-09-01
首版时间 2010-09-01
印刷时间 2010-09-01
正文语种
读者对象 研究人员,普通成人
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类 科学技术-自然科学-数学
图书小类
重量 0.484
CIP核字
中图分类号 O187
丛书名
印张 15
印次 1
出版地 北京
246
175
15
整理
媒质 图书
用纸 普通纸
是否注音
影印版本 原版
出版商国别 CN
是否套装 单册
著作权合同登记号
版权提供者
定价
印数
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/9 13:33:56