首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 概率论入门
内容
编辑推荐

雷斯尼克著的《概率论入门》是一部十分经典的概率论教程。1999年初版,2001年第2次重印,2003年第3次重印,同年第4次重印,2005年第5次重印,受欢迎程度可见一斑。大多数概率论书籍是写给数学家看的,漂亮的数学材料是吸引读者的一大亮点;相反地,本书目标读者是数学及非数学专业的研究生,帮助那些在统计、应用概率论、生物、运筹学、数学金融和工程研究中需要深入了解高等概率论的所有人员。目次:集合和事件;概率空间;随机变量、元素和可测映射;独立性;积分和期望;收敛的概念;大数定律和独立随机变量的和;分布的收敛;特征函数和。

目录

Preface

1 Sets and Eyents

 1.1 Introduction

 1.2 BasicSetTheory

1.2.1 Indicatotfunotions

 1.3 LimitsofSets

 1.4 MonotoneSequences

 1.5 SetOperations andClosure

1.5.1 Examples

 1.6 The σ-field Generated by a Given Class C

 1.7 Borel Sets on the Real Line

 1.8 Comparing Borel Sets

 1.9 Exeroises.

2 Probability Spaces

 2.1 Basic Definitions and Properties

 2.2 More onClosure

2.2.1 Dynkin'Stheorem

2.2.2 Proof of Dynkin'Stheorem

 2.3 Two Constructions

 2.4 Constructions of Probability Spaces

2.4.1 GeneraI Construction of a Probability Model

2.4.2 Proof of the Second Extension Theorem

 2.5 Measure Constructions

2.5.1 Lebesgue Measure on(0,1]

2.5.2 Construction of a Probability Measure on R with Given

DistributionFunction F(x)

 2.6 Exercises

3 Random variables,Elements,and Measurable Maps

 3.1 Inverse Maps

 3.2 Measurable Malas,Random Elements

Induced Probability Measnres

3.2.1 Composition

3.2.2 Random Elements of Metric Spaces

3.2.3 Measurability andContinuity

3.2.4 Measurabilitv andLimits

 3.3 σ-FieldsGenerated byMaps

 3.4 Exercises

4 Independence

 4.1 Basic Definitions

 4.2 Independent Random Variables

 4.3 Two Examples ofIndependence

4.3.1 Records,Ranks,RenyiTheorem.

4.3.2 Dyadic Expansions of Uniforill Random Numbers.

 4.4 More onIndependence:Groupings

 4.5 Independence,Zero-One Laws,Borel-Cantelli Lemma.

4.5.1 Borel-CantelliLemma

4.5.2 Borel Zero-OneLaw

4.5.3 Kolmogorov Zero-One Law

 4.6 Exercises

5 Integration and Expectation

 5.1 Preparation for Integration

5.1.1 Simple Functions

5.1.2 Measurability and Simple Functions

 5.2 Expectation andIntegration

5.2.1 Expectation of Simple Functions

5.2.2 Extension of the Definition

5.2.3 Basic Properties of Expectation

 5.3 Limits and Integrals

 5.4 Indefinite Integrals

 5.5 The Transformation Theorem and Densities

5.5.1 Expectation is Always anIntegral on R

5.5.2 Densities

 5.6 The Riemann vs Lebesgue Integral

 5.7 Product Spaces

 5.8 Probabifity Measureson Product Spaces

 5.9 Fubini's theorem

 5.10 Exercises

6 Convergence Concepts

 6.1 Almost Sur eConvergence

 6.2 Convergence in Probability

6.2.1 Statisticsl Terminology

 6.3 Connections Between a.a.and i.p.Convergence

 6.4 0uantile Estimation

 6.5 Lp Convergence

6.5.1 Uniform Integrability

6.5.2 Interlude:A Review of Inequalities

 6.6 More on Lp Convergence

 6.7 Exercises

7 Laws of Large Numbers and Sums

 of Independent Random Variables

 7.1 Truncation and Equivalence

 7.2 A General Weak Law of Large Numbers

 7.3 Almost Sure Convergence of Sums

of Independent Random Variables

 7.4 Strong Lawsof Large Numbers

7.4.1 Two Examples

 7.5 The Strong Lawof Large Numbers for IID Sequences

7.5.1 Two Applications of the SLLN

 7.6 The Kolmogorov Three Series Theorem

7.6.1 Necessity of the Kolmogorov Three Series Theorem

 7.7 Exercises

8 Convergence in Distribution

 8.1 Basic Definitions

 8.2 Schefe's lemma

8.2.1 Scheffe's Lemma and Order Statistics

 8.3 The Baby Skorohod Theorem

8.3.1 The Delta Method

 8.4 Weak Convergence Equivalences;Portmanteau Theorem

 8.5 More Relations Among Modes ofConvergence

 8.6 New Convergencesfrom Old

8.6.1 Example:The Central Limit Ineorem for m-Dependent

Random variables

 8.7 The Convergence to Types Theorem

8.7.1 Applicationof Convergenceto Types:Limit Distributions

for Extremes

8.8 Exercises

9 Characteristic Functions and the Central Limit Theorem

 9.1 Review of Moment Generating Functions

and the Central Limit Theorcm

 9.2 Characteristic Functions:Definition and First Properties

 9.3 Expansions

9.3.1 Expansion ofe ix

 9.4 Momelts and Derivatives

 9.5 Two Big Theorems:Uniqueness and Continuity

 9.6 The Selection Theorem,Tightness,and

Prohorov's theorem

9.6.1 The Selection Theorem

9.6.2 Tightness,Relative Compactness,

and Prohorov's Theorem

9.6.3 Proof of the Continuity Theorem

 9.7 The Classical CLT for iid Random Variables

 9.8 The Lindeberg-Feller CLT

 9.9 Exercises

10 Martingales

 10.1 Prelude to Conditional Expectation:

The Radon-Nikodym Theorem

 10.2 Definition of Cnnditional Expectation

 10.3 Properties of ConditionaI Expectation

 10.4 Martingales

 10.5 Examples of Martingales.

 10.6 Connections between Martingales and Submartingales

10.6.1 Doob's Decomposition

 10.7 StoppingT imes

 10.8 Positive Super Martingales

10.8.1 Operations on Supermartingales

10.8.2 Upcrossings

10.8.3 Bonndedness Properties

10.8.4 Convergence of Positive Super Martingales

10.8.5 CInsure

10.8.6 Stopping Supermartingales

 10.9 Examples

10.9.1 Gambler's Ruin

10.9.2 Branching Processes

10.9.3 Some Differentiation Theory.

 10.10 Martingale and Submartingale Convergence

10.10.1 Krickeberg Decomposition

10.10.2 Doob's(Sub)martingale Convergence Theorem

 10.11 Regularity and Clnsure

 10.12 Regularity and Stopping

 10.13 Stopping Theorems

10.14 Wald's Identity and RandomWalks

10.14.1 The Basic Martingales

10.14.2 Regular Stopping Times

10.14.3 Examples of Integrable Stopping Times

10.14.4 The Simple Random Walk

10.15 Reversed Martingales

10.16 Fundamental Theorems of Mathematical Finance

10.16.1 ASimple Market Model

10.16.2 Admissible Strategies and Arbitrage

10.16.3 Arbitrage and Martingales

10.16.4 Complete Markets

10.16.5 Option Pricing

10.17 Exereises

RefeFences

Index

标签
缩略图
书名 概率论入门
副书名
原作名
作者 (美)雷斯尼克
译者
编者
绘者
出版社 世界图书出版公司
商品编码(ISBN) 9787510058271
开本 24开
页数 453
版次 1
装订 平装
字数
出版时间 2013-03-01
首版时间 2013-03-01
印刷时间 2013-03-01
正文语种
读者对象 青年(14-20岁),研究人员,普通成人
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类 科学技术-自然科学-数学
图书小类
重量 0.566
CIP核字 2013035280
中图分类号 O211
丛书名
印张 19.5
印次 1
出版地 北京
223
150
20
整理
媒质 图书
用纸 普通纸
是否注音
影印版本 原版
出版商国别 CN
是否套装 单册
著作权合同登记号
版权提供者
定价
印数
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/17 20:52:34