首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 统计理论
内容
编辑推荐

舍维什编著的这本《统计理论》是一部经典的讲述统计理论的研究生教程,综合性强,内容涵盖:估计;检验;大样本理论,这些都是研究生要进入博士或者更高层次必须学习的预备知识。为了让读者具备更加强硬的数学背景和更广阔的理论知识,书中不仅给出了经典方法,也给出了贝叶斯推理知识。本书目次如下:概率模型;充分统计量;决策理论;假设检验;估计;等价;大样本理论;分层模型;序列分析;附录:测度与积分理论;概率论;数学定理;分布概述。

本书读者对象:概率统计、数学专业以及相关专业的高年级本科生、研究生和相关的科研人员。

目录

Preface

Chapter 1: Probability Models

1.1 Background

 1.1.1 General Concepts

 1.1.2 Classical Statistics

 1.1.3 Bayesian Statistics

1.2 Exchangeability

 1.2.1 Distributional Symmetry

 1.2.2 Frequency and Exchangeability

1.3 Parametric Models

 1.3.1 Prior, Posterior, and Predictive Distributions

 1.3.2 Improper Prior Distributions

 1.3.3 Choosing Probability Distributions

1.4 DeFinetti's Representation Theorem

 1.4.1 Understanding the Theorems

 1.4.2 The Mathematical Statements

 1.4.3 Some Examples

1.5 Proofs of DeFinetti's Theorem and Related Results

 1.5.1 Strong Law of Large Numbers

 1.5.2 The Bernoulli Case

 1.5.3 The General Finite Case

 1.5.4 The General Infinite Case

 1.5.5 Formal Introduction to Parametric Models

1.6 Infinite-Dimensional Parameters

 1.6.1 Dirichlet Processes

 1.6.2 Tailfree Processes

1.7 Problems

Chapter 2: Sufficient Statistics

2.1 Definitions

 2.1.1 Notational Overview

 2.1.2 Sufficiency

 2.1.3 Minimal and Complete Sufficiency

 2.1.4 Ancillarity

2.2 Exponential Families of Distributions

 2.2.1 Basic Properties

 2.2.2 Smoothness Properties

 2.2.3 A Characterization Theorem

  2.3 Information

 2.3.1 Fisher Information

 2.3.2 Kullback-Leibler Information

 2.3.3 Conditional Information

 2.3.4 Jeffreys' Prior

2.4 Extremal Families

 2.4.1 The Main Results

 2.4.2 Examples

 2.4.3 Proofs

2.5 Problems

Chapter 3: Decision Theory

3.1 Decision Problems

 3.1.1  Framework

 3.1.2 Elements of Bayesian Decision Theory

 3.1.3 Elements of Classical Decision Theory

 3.1.4 Summary

3.2 Classical Decision Theory

 3.2.1 The Role of Sufficient Statistics

 3.2.2 Admissibility

 3.2.3 James-Stein Estimators

 3.2.4 Minimax Rules

 3.2.5 Complete Classes

3.3 Axiomatic Derivation of Decision Theory

 3.3.1 Definitions and Axioms

 3.3.2 Examples

 3.3.3 The Main Theorems

 3.3.4 Relation to Decision Theory

 3.3.5 Proofs of the Main Theorems

 3.3.6 State-Dependent Utility

3.4 Problems

Chapter 4: Hypothesis Testing

4.1 Introduction

 4.1.1 A Special Kind of Decision Problem

 4.1.2 Pure Significance Tests

4.2 Bayesian Solutions

 4.2.1 Testing in General

 4.2.2 Bayes Factors

4.3 Most Powerful Tests

 4.3.1 Simple Hypotheses and Alternatives

 4.3.2 Simple Hypotheses, Composite Alternatives

 4.3.3 One-Sided Tests

 4.3.4 Two-Sided Hypotheses

4.4 Unbiased Tests

 4.4.1 General Results

 4.4.2 Interval Hypotheses

 4.4.3 Point Hypotheses

4.5 Nuisance Parameters

 4.5.1 Neyman Structure

 4.5.2 Tests about Natural Parameters

 4.5.3 Linear Combinations of Natural Parameters

 4.5.4 Other Two-Sided Cases

 4.5.5 Likelihood Ratio Tests

 4.5.6 The Standard F-Test as a Bayes Rule

4.6 P-Values

 4.6.1 Definitions and Examples

 4.6.2 P-Values and Bayes Factors

4.7 Problems

Chapter 5: Estimation

5.1 Point Estimation

 5.1.1 Minimum Variance Unbiased Estimation

 5.1.2 Lower Bounds on the Variance of Unbiased Estimators

 5.1.3 Maximum Likelihood Estimation

 5.1.4 Bayesian Estimation

 5.1.5 Robust Estimation

5.2 Set Estimation

 5.2.1 Confidence Sets

 5.2.2 Prediction Sets

 5.2.3 Tolerance Sets

 5.2.4 Bayesian Set Estimation

 5.2.5 Decision Theoretic Set Estimation

5.3 The Bootstrap

 5.3.1 The General Concept

 5.3.2 Standard Deviations and Bias

 5.3.3 Bootstrap Confidence Intervals

5.4 Problems

Chapter 6: Equivariance

6.1 Common Examples

 6.1.1 Location Problems

 6.1.2 Scale Problems

6.2 Equivariant Decision Theory

 6.2.1 Groups of Transformations

 6.2.2 Equivariance and Changes of Units

 6.2.3 Minimum Risk Equivariant Decisions

6.3 Testing and Confidence Intervals

 6.3.1 P-Values in Invariant Problems

 6.3.2 Equivariant Confidence Sets

 6.3.3 Invariant Tests

6.4 Problems

Chapter 7: Large Sample Theory

7.1 Convergence Concepts

 7.1.1 Deterministic Convergence

 7.1.2 Stochastic Convergence

 7.1.3 The Delta Method

7.2 Sample Quantiles

 7.2.1 A Single Quantile

 7.2.2 Several Quantiles

 7.2.3 Linear Combinations of Quantiles

7.3 Large Sample Estimation

 7.3.1 Some Principles of Large Sample Estimation

 7.3.2 Maximum Likelihood Estimators

 7.3.3 MLEs in Exponential Families

 7.3.4 Examples of Inconsistent MLEs

 7.3.5 Asymptotic Normality of MLEs

 7.3.6 Asymptotic Properties of M-Estimators

7.4 Large Sample Properties of Posterior Distributions

 7.4.1 Consistency of Posterior Distributions

 7.4.2 Asymptotic Normality of Posterior Distributions

 7.4.3 Laplace Approximations to Posterior Distributions

 7.4.4 Asymptotic Agreement of Predictive Distributions

7.5 Large Sample Tests

 7.5.1 Likelihood Ratio Tests

 7.5.2 Chi-Squared Goodness of Fit Tests

7.6 Problems

Chapter 8: Hierarchical Models

8.1 Introduction

 8.1.1 General Hierarchical Models

 8.1.2 Partial Exchangeability

 8.1.3 Examples of the Representation Theorem

8.2 Normal Linear Models

 8.2.1 One-Way ANOVA

 8.2.2 Two-Way Mixed Model ANOVA

 8.2.3 Hypothesis Testing

8.3 Nonnormal Models

 8.3.1 Poisson Process Data

 8.3.2 Bernoulli Process Data

8.4 Empirical Bayes Analysis

 8.4.1 Naive Empirical Bayes

 8.4.2 Adjusted Empirical Bayes

 8.4.3 Unequal Variance Case

8.5 Successive Substitution Sampling

 8.5.1 The General Algorithm

 8.5.2 Normal Hierarchical Models

 8.5.3 Nonnormal Models

8.6 Mixtures of Models

 8.6.1 General Mixture Models

 8.6.2 Outliers

 8.6.3 Bayesian Robustness

8.7 Problems

Chapter 9: Sequential Analysis

9.1 Sequential Decisicn Problems

9.2 The Sequential Probability Ratio Test

9.3 Interval Estimation

9.4 The Relevance of Stopping Rules

9.5 Problems

Appendix A: Measure and Integration Theory

A.1 Overview

 A.1.1 Definitions

 A.1.2 Measurable Functions

 A.1.3 Integration

 A.1.4 Absolute Continuity

A.2 Measures

A.3 Measurable Functions

A.4 Integration

A.5 Product Spaces

A.6 Absolute Continuity

A.7 Problems

Appendix B: Probability Theory

B.1 Overview

 B.1.1 Mathematical Probability

 B.1.2 Conditioning

 B.1.3 Limit Theorems

B.2 Mathematical Probability

 B.2.1 Random Quantities and Distributions

 B.2.2 Some Useful Inequalities

B.3 Conditioning

 B.3.1 Conditional Expectations

 B.3.2 Borel Spaces

 B.3.3 Conditional Densities

 B.3.4 Conditional Independence

 B.3.5 The Law of Total Probability

B.4 Limit Theorems

 B.4.1 Convergence in Distribution and in Probability

 B.4.2 Characteristic Functions

B.5 Stochastic Processes

 B.5.1 Introduction

 B.5.2 Martingales

 B.5.3 Markov Chains

 B.5.4 General Stochastic Processes

B.6 Subjective Probability

B.7 Simulation

B.8 Problems

Appendix C: Mathematical Theorems Not Proven Here

C.1 Real Analysis

C.2 Complex Analysis

C.3 Functional Analysis

Appendix D: Summary of Distributions

D.1 Univariate Continuous Distributions

D.2 Univariate Discrete Distributions

D.3 Multivariate Distributions

References

Notation and Abbreviation Index

Name Index

Subject Index

标签
缩略图
书名 统计理论
副书名
原作名
作者 (美)舍维什
译者
编者
绘者
出版社 世界图书出版公司
商品编码(ISBN) 9787510068119
开本 24开
页数 702
版次 1
装订 平装
字数
出版时间 2014-01-01
首版时间 2014-01-01
印刷时间 2014-01-01
正文语种
读者对象 青年(14-20岁),研究人员,普通成人
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类 经济金融-金融会计-会计
图书小类
重量 0.834
CIP核字 2013188646
中图分类号 C8
丛书名
印张 30.5
印次 1
出版地 北京
222
148
29
整理
媒质 图书
用纸 普通纸
是否注音
影印版本 原版
出版商国别 CN
是否套装 单册
著作权合同登记号 图字:01-2013-6776
版权提供者
定价
印数
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/19 11:04:55