首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 CUDA范例精解--通用GPU编程(影印版)
内容
编辑推荐

对于处理基于图形加速器的计算系统的人员来说,山德尔、康洛特编著的《CUDA范例精解——通用GPU编程(影印版)》是必不可少的读物。向程序员展示了如何使用这种新的技术,并且通过大量可以运行的示例介绍了CUDA开发的每个领域。

内容推荐

CUDA是设计用于帮助开发并行程序的计算体系结构。通过与广泛的软件平台相结合,CUDA体系结构使程序员可以充分利用图形处理单元(GPU)的强大能力构建高性能的应用程序。当然,GPU已经在很长时间内用于实现复杂的图形和游戏应用程序。现在,CUDA将这种极具价值的资源带给在其他领域内从事应用程序开发的程序员,包括科学、工程和财务领域。这些程序员完全不需要了解图形编程的相关知识,而只要能够采用适当扩展的C语言版本进行编程即可。

山德尔、康洛特编著的《CUDA范例精解——通用GPU编程(影印版)》由CUDA软件平台团队中的两位资深成员编写而成,他们向程序员展示了如何使用这种新的技术,并且通过大量可以运行的示例介绍了CUDA开发的每个领域。在简要介绍CUDA平台和体系结构以及快速指导CUDA C之后,《CUDA范例精解——通用GPU编程(影印版)》详细介绍了与每个关键的CUDA功能相关的技术,以及如何权衡使用这些功能。通过阅读本书,您将掌握使用每个CUDA C扩展的时机以及编写性能极为优越的CUDA软件的方式。

目录

Foreword

Preface

Acknowledgments

About the Authors

1 WHY CUDA? WHY NOW?

 1.1 Chapter Objectives

 1.2 The Age of Parallel Processing

1.2.1 Central Processing Units

 1.3 The Rise of GPU Computing

1.3.1 A Brief History of GPUs

1.3.2 Early GPU Computing

 1.4 CUDA

1.4.1 What Is theCUDAArchitecture?

1.4.2 Using the CUDAArchitecture

 1.5 Applications of CUDA

1.5.1 Medical- Imaging

1.5.2 ComputationatFl-uid Dynamics

1.5.3 Environmental- Science

 1.6 Chapter Review

2 GETTING STARTED

 2.1 Chapter Objectives

 2.2 Devetopment Environment

2.2.1 CUDA-Enabled Graphics Processors

2.2.2 NVlDIA Device Driver

2.2.3 CUDA Development Toolkit

2.2.4 Standard C Compiler

 2.3 Chapter Review

3 INTRODUCTION TO CUBA C

 3.1 Chapter Objectives

 3.2 A First Program

3.2.1 Hetlo, Wortd!

3.2.2 A Kernet Catl

3.2.3 Passing Parameters

 3.3 Querying Devices

 3.4 Using Device Properties

 3.5 Chapter Review

4 PARALLEL PROGRAMMING IN CUDA C

 4.1 Chapter Objectives

 4.2 CUBA Parattel Programming

4.2.1 Summing Vectors

4.2.2 A Fun Exampte

 4.3 Chapter Review

5 THREAD COOPERATION

 5.1 Chapter Objectives

 5.2 Splitting Paraltel Blocks

5.2.1 Vector Sums: Redux

5.2.2 GPU Ripple Using Threads

 5.3 Shared Memory and Synchronization

5.3.1 Dot Product

5.3.2 Dot Product Optimized lIncorrectLyl

5.3.3 Shared Memory Bitmap

 5.4 Chapter Review

6 CONSTANT MEMORY AND EVENTS

 6.1 Chapter Objectives

 6.2 Constant Memory

6.2.1 RayTracing Introduction

6.2.2 Ray Tracing on the GPU

6.2.3 Ray Tracing with Constant Memory

6.2.4 Performance with Constant Memory

 6.3 Measuring Performance with Events

6.3.1 Measuring Ray Tracer Performance

 6.4 Chapter Review

7 TEXTURE MEMORY

 7.1 Chapter Objectives

 7.2 Texture Memory Overview

 7.3 Simulating Heat Transfer

7.3.1 Simple Heating Model

7.3.2 Computing Temperature Updates

7.3.3 Animating the Simulation

7.3.4 Using Texture Memory

7.3.5 Using Two-Dimensional Texture Memory

 7.4 Chapter Review

8 GRAPHICS INTEROPERABILITY

 8.1 Chapter Objectives

 8.2 Graphics Interoperation

 8.3 GPU Ripple with Graphics Interoperability

8.3.1 The GPUAnimBitmap Structure

8.3.2 GPU Ripple Redux

 8.4 Heat Transfer with Graphics Interop

 8.5 DirectX Interoperability

 8.6 Chapter Review

9 ATOHICS

 9.1 Chapter Objectives

 9.2 Compute Capability

9.2.1 The Compute Capability of NVIDIA GPUs

9.2.2 Compiling for a Minimum Compute Capability

 9.3 Atomic Operations Overview

 9.4 Computing Histograms

9.4.1 CPU Histogram Computation

9.4.2 GPU Histogram Computation

 9.5 Chapter Review

10 STREAMS

 10.1 Chapter Objectives

 10.2 Page-Locked Host Memory

 10.3 CUDA Streams

 10.4 Using a Single CUDA Stream

 10.5 Using Muitipte CUDA Streams

 10.6 GPU Work Scheduting

 10.7 Using Muttipte CUDA Streams Effectivety

 10.8 Chapter Review

11  CUDA C ON MULTIPLE GPUS

 11.1 Chapter Objectives

 11.2 Zero-Copy Host Memory

11.2.1 Zero-Copy Dot Product

11.2.2 Zero-Copy Performance

 11.3 Using Multiple GPUs

 11.4 Portable Pinned Memory

 11.5 Chapter Review

12 THE FINAL COUNTDOWN

 12.1 Chapter Objectives

 12.2 CUDA Toots

12.2.1 CUDA Tootkit

12.2.2 CUFFT

12.2.3 CUBLAS

12.2.4 NVlDIAGPU ComputingSDK

12.2.5 NVIDIA Performance Primitives

12.2.6 Debugging CUDAC

12.2.7 CUDAVisual Profiler

 12.3 Written Resources

12.3.1 Programming Massively Parallel Processors:A Hands-On Approach

12.3.2 CUDA U

12.3.3 NVIDIA Forums

 12.4 Code Resources

12.4.1 CUDA Data Parallel Primitives Library

12.4.2 CULAtools

12.4.3 Language Wrappers

 12.5 Chapter Review

A  ADVANCED ATOMICS

 A.1 Dot Product Revisited

A.I.1 Atomic Locks

A.I.2 Dot Product Redux:Atomic Locks

 A.2 Implementing a Hash Table

A.2.1 Hash Table Overview

A.2.2 ACPU HashTable

A.2.3 Multithreaded Hash Table

A.2.4 AGPU Hash Table

A.2.5 Hash Table Performance

 A.3 Appendix Review

Index

标签
缩略图
书名 CUDA范例精解--通用GPU编程(影印版)
副书名
原作名
作者 (美)山德尔//康洛特
译者
编者
绘者
出版社 清华大学出版社
商品编码(ISBN) 9787302239956
开本 16开
页数 290
版次 1
装订 平装
字数 431
出版时间 2010-10-01
首版时间 2010-10-01
印刷时间 2010-10-01
正文语种
读者对象 普通成人
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类 计算机-操作系统
图书小类
重量 0.476
CIP核字
中图分类号 TP391.41
丛书名
印张 19.25
印次 1
出版地 北京
229
184
14
整理
媒质 图书
用纸 普通纸
是否注音
影印版本 原版
出版商国别 CN
是否套装 单册
著作权合同登记号 图字01-2010-5495
版权提供者 培生教育出版集团
定价
印数 3000
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/7 5:18:54