姜伯驹所著的《绳圈的数学》主要介绍关于纽结与链环的基本概念,用初等讲法来介绍琼斯多项式,并证明了泰特关于交错纽结的猜测。《绳圈的数学》还讨论与绳圈的具体形状有关的几何量,诸如弯曲、扭转、缠绕等。这些几何量在绳圈作连续变形时是要发生改变的,其变化却又受到绳圈的拓扑不变量的制约。
| 图书 | 绳圈的数学/走向数学丛书 |
| 内容 | 编辑推荐 姜伯驹所著的《绳圈的数学》主要介绍关于纽结与链环的基本概念,用初等讲法来介绍琼斯多项式,并证明了泰特关于交错纽结的猜测。《绳圈的数学》还讨论与绳圈的具体形状有关的几何量,诸如弯曲、扭转、缠绕等。这些几何量在绳圈作连续变形时是要发生改变的,其变化却又受到绳圈的拓扑不变量的制约。 目录 续编说明 编写说明 绪言 一 纽结与链环的基本概念 §1.1 什么是纽结,什么是链环 习题 §1.2 纽结与链环的投影图 习题 §1.3 用初等变换鉴别链环 习题 习题 §1.4 有向链环环绕数 习题 §1.5 形形色色的纽结与链环 习题 二 琼斯多项式 §2.1 琼斯的多项式不变量 习题 §2.2 尖括号多项式 §2.3 琼斯多项式及其基本性质 习题 习题 三 交错纽结与交错链环 §3.1 四岔地图的着色 习题 §3.2 泰特猜测的证明 习题 §3.3 交错链环与交错多项式 习题 四 总的弯曲量 §4.1 闭折线的全曲率 习题 §4.2 方向球面芬舍尔定理的证明 §4.3 面积原理法利-米尔诺定理的证明 五 扭转与绞拧的关系 §5.1 带形模型 §5.2 再谈环绕数 习题 §5.3 绞拧数 习题 §5.4 带形的扭转数 习题 §5.5 怀特公式 习题 六 在分子生物学中的应用 §6.1 DNA和拓扑异构酶 §6.2 实验的技术 §6.3 生物化学中的拓扑方法 阅读材料 附表 纽结与链环及其琼斯多项式 |
| 标签 | |
| 缩略图 | ![]() |
| 书名 | 绳圈的数学/走向数学丛书 |
| 副书名 | |
| 原作名 | |
| 作者 | 姜伯驹 |
| 译者 | |
| 编者 | |
| 绘者 | |
| 出版社 | 大连理工大学出版社 |
| 商品编码(ISBN) | 9787561161449 |
| 开本 | 32开 |
| 页数 | 174 |
| 版次 | 1 |
| 装订 | 平装 |
| 字数 | 100 |
| 出版时间 | 2011-05-01 |
| 首版时间 | 2011-05-01 |
| 印刷时间 | 2011-05-01 |
| 正文语种 | 汉 |
| 读者对象 | 研究人员,普通成人 |
| 适用范围 | |
| 发行范围 | 公开发行 |
| 发行模式 | 实体书 |
| 首发网站 | |
| 连载网址 | |
| 图书大类 | 科学技术-自然科学-数学 |
| 图书小类 | |
| 重量 | 0.218 |
| CIP核字 | |
| 中图分类号 | O189 |
| 丛书名 | |
| 印张 | 6.125 |
| 印次 | 1 |
| 出版地 | 辽宁 |
| 长 | 210 |
| 宽 | 147 |
| 高 | 10 |
| 整理 | |
| 媒质 | 图书 |
| 用纸 | 普通纸 |
| 是否注音 | 否 |
| 影印版本 | 原版 |
| 出版商国别 | CN |
| 是否套装 | 单册 |
| 著作权合同登记号 | |
| 版权提供者 | |
| 定价 | |
| 印数 | |
| 出品方 | |
| 作品荣誉 | |
| 主角 | |
| 配角 | |
| 其他角色 | |
| 一句话简介 | |
| 立意 | |
| 作品视角 | |
| 所属系列 | |
| 文章进度 | |
| 内容简介 | |
| 作者简介 | |
| 目录 | |
| 文摘 | |
| 安全警示 | 适度休息有益身心健康,请勿长期沉迷于阅读小说。 |
| 随便看 |
|
兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。