首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 多维实分析(第2卷)
内容
编辑推荐

This book, which is in two parts, provides an introduction to the theory of vectorvalued functions on Euclidean space. We focus on four main objects of study and in addition consider the interactions between these. Volume I is devoted to differentiation. Differentiable functions on Rn come first, in Chapters 1 through 3.Next, differentiable manifolds embedded in Rn are discussed, in Chapters 4 and 5. In Volume II we take up integration. Chapter 6 deals with the theory of n-dimensional integration over Rn. Finally, in Chapters 7 and 8 lower-dimensional integration over submanifolds of Rn is developed; particular attention is paid to vector analysis and the the6ry of differential forms, which are treated independently from each other.Generally speaking, the emphasis is on geometric aspects of analysis rather than on matters belonging to functional analysis.

目录

Volume Ⅱ

 Preface

 Acknowledgments

 Introduction

6 Integration

 6.1 Rectangles

 6.2 Riemann integrability

 6.3 Jordan measurability

 6.4 Successive integration

 6.5 Examples of successive integration

 6.6 Change of Variables Theorem: formulation and examples

 6.7 Partitions of unity

 6.8 Approximation of Riemann integrable functions

 6.9 Proof of Change of Variables Theorem

 6.10 Absolute Riemann integrability

 6.11 Application of integration: Fourier transformation

 6.12 Dominated convergence

 6.13 Appendix: two other proofs of Change of Variables Theorem

7 Integration over Submanifolds

 7.1 Densities and integration with respect to density

 7.2 Absolute Riemann integrability with respect to density

 7.3 Euclidean d-dimensional density

 7.4 Examples of Euclidean densities

 7.5 Open sets at one side of their boundary

 7.6 Integration of a total derivative

 7.7 Generalizations of the preceding theorem

 7.8 Gauss' Divergence Theorem

 7.9 Applications of Gauss' Divergence Theorem

8 Oriented Integration

 8.1 Line integrals and properties of vector fields

 8.2 Antidifl'erentiation

 8.3 Green's and Cauchy's Integral Theorems

 8.4 Stokes' Integral Theorem

 8.5 Applications of Stokes' Integral Theorem

 8.6 Apotheosis: differential forms and Stokes' Theorem

 8.7 Properties of differential forms

 8.8 Applications of differential forms

 8.9 Homotopy Lemma

 8.10 Poincard's Lemma

 8.11 Degree of mapping

Exercises

 Exercises for Chapter 6

 Exercises for Chapter 7

 Exercises for Chapter 8

Notation

Index

Volume Ⅰ

 Preface

 Acknowledgments

 Introduction

1 Continuity

 1.1 Inner product and norm

 1.2 Open and closed sets

 1.3 Limits and continuous mappings

 1.4 Composition of mappings

 1.5 Homeomorphisms

 1.6 Completeness

 1.7 Contractions

 1.8 Compactness and uniform continuity

 1.9 Connectedness

2 Differentiation

 2.1 Linear mappings

 2.2 Differentiahle mappings

 2.3 Directional and partial derivatives

 2.4 Chain rule

 2.5 Mean Value Theorem

 2.6 Gradient

 2.7 Higher-order derivatives

 2.8 Taylor's formula

 2.9 Critical points

 2.10 Commuting limit operations

3 Inverse Function and Implicit Function Theorems

 3.1 Diffeomorphisms

 3.2 Inverse Function Theorems

 3.3 Applications of Inverse Function Theorems

 3.4 Implicitly defined mappings

 3.5 Implicit Function Theorem

 3.6 Applications of the Implicit Function Theorem

 3.7 Implicit and Inverse Function Theorems on C

4 Manifolds

 4.1 Introductory remarks

 4.2 Manifolds

 4.3 Immersion Theorem

 4.4 Examples of immersions

 4.5 Submersion Theorem

 4.6 Examples of submersions

 4.7 Equivalent definitions of manifold

 4.8 Morse's Lemma

5 Tangent Spaces

 5.1 Definition of tangent space

 5.2 Tangent mapping

 5.3 Examples of tangent spaces

 5.4 Method of Lagrange multipliers

 5.5 Applications of the method of multipliers

 5.6 Closer investigation of critical points

 5.7 Gaussian curvature of surface

 5.8 Curvature and torsion of curve in R3

 5.9 One-parameter groups and infinitesimal generators

 5.10 Linear Lie groups and their Lie algebras

 5.11 Transversality

Exercises

 Review Exercises

 Exercises for Chapter 1

 Exercises lot Chapter 2

 Exercises for Chapter 3

 Exercises for Chapter 4

 Exercises for Chapter 5

Notation

Index

标签
缩略图
书名 多维实分析(第2卷)
副书名
原作名
作者 (荷)杜斯特马特
译者
编者
绘者
出版社 世界图书出版公司
商品编码(ISBN) 9787510005183
开本 24开
页数 798
版次 1
装订 平装
字数
出版时间 2009-08-01
首版时间 2009-08-01
印刷时间 2009-08-01
正文语种
读者对象 青年(14-20岁),研究人员,普通成人
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类 科学技术-自然科学-数学
图书小类
重量 0.476
CIP核字
中图分类号 O1-0
丛书名
印张 16.5
印次 1
出版地 北京
225
151
16
整理
媒质 图书
用纸 普通纸
是否注音
影印版本 原版
出版商国别 CN
是否套装 单册
著作权合同登记号 图字01-2009-1664
版权提供者 Cambridge University Press
定价
印数
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/10 4:15:11