首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 连续鞅和布朗运动(第3版)
内容
编辑推荐

Since the first edition of this book (1991), the interest for Brownian motion and related stochastic processes has not abated in the least. This is probably due to the fact that Brownian motion is in the intersection of many fundamental classes of processes. It is a continuous martingale, a Gaussian process, a Markov process or more specifically a process with independent increments; it can actually be defined, up to simple transformations, as the real-valued, centered process with stationary independent increments and continuous paths.

After a first chapter where Brownian motion is introduced, each of the following ones is devoted to a new technique or notion and to some of its applications to Brownian motion. Among these techniques, two are of paramount importance: stochastic calculus, the use of which pervades the whole book, and the powerful excursion theory, both of which are introduced in a self-contained fashion and with a minimum of apparatus.

目录

Chapter 0. Preliminaries

§1. Basic Notation

§2. Monotone Class Theorem

§3. Completion

§4. Functions of Finite Variation and Stieltjes Integrals

§5. Weak Convergence in Metric Spaces

§6. Gaussian and Other Random Variables

Chapter I. Introduction

§1. Examples of Stochastic Processes. Brownian Motion

§2. Local Properties of Brownian Paths

§3. Canonical Processes and Gaussian Processes

§4. Filtrations and Stopping Times

Notes and Comments

Chapter II. Martingales

§1. Definitions, Maximal Inequalities and Applications

§2. Convergence and Regularization Theorems

§3. Optional Stopping Theorem

Notes and Comments

Chapter III. Markov Processes

§1. Basic Definitions

§2. Feller Processes

§3. Strong Markov Property

§4. Summary of Results on Levy Processes

Notes and Comments

Chapter IV. Stochastic Integration

§1. Quadratic Variations

§2. Stochastic Integrals

§3. Ito's Formula and First Applications

§4. Burkholder-Davis-Gundy Inequalities

§5. Predictable Processes

Notes and Comments

Chapter V. Representation of Martingales

§1. Continuous Martingales as Time-changed Brownian Motions

§2. Conformal Martingales and Planar Brownian Motion

§3. Brownian Martingales

§4. Integral Representations

Notes and Comments

Chapter VI. Local Times

§1. Definition and First Properties

§2. The Local Time of Brownian Motion

§3. The Three-Dimensional Bessel Process

§4. First Order Calculus

§5. The Skorokhod Stopping Problem

Notes and Comments

Chapter VII. Generators and Time Reversal

§1. Infinitesimal Generators.

§2. Diffusions and Ito Processes

§3. Linear Continuous Markov Processes

§4. Time Reversal and Applications

Notes and Comments

Chapter VIII. Girsanov's Theorem and First Applications

§1. Girsanov's Theorem 

§2. Application of Girsanov's Theorem to the Study of Wiener's Space

§3. Functionals and Transformations of Diffusion Processes

Notes and Comments

Chapter IX. Stochastic Differential Equations

§1. Formal Definitions and Uniqueness

§2. Existence and Uniqueness in the Case of Lipschitz Coefficients

§3. The Case of Holder Coefficients in Dimension One

Notes and Comments

Chapter X. Additive Functionals of Brownian Motion

§1. General Definitions

§2. Representation Theorem for Additive Functionals of Linear Brownian Motion

§3. Ergodic Theorems for Additive Functionals

§4. Asymptotic Results for the Planar Brownian Motion

Notes and Comments

Chapter XI. Bessel Processes and Ray-Knight Theorems

§1. Bessel Processes

§2. Ray-Knight Theorems

§3. Bessel Bridges

Notes and Comments

Chapter XII. Excursions

§1. Prerequisites on Poisson Point Processes

§2. The Excursion Process of Brownian Motion

§3. Excursions Straddling a Given Time

§4. Descriptions of Ito's Measure and Applications

Notes and Comments 

Chapter XIII. Limit Theorems in Distribution

§1. Convergence in Distribution

§2. Asymptotic Behavior of Additive Functionals of Brownian Motion

§3. Asymptotic Properties of Planar Brownian Motion

Notes and Comments

Appendix

§1. Gronwall's Lemma

§2. Distributions

§3. Convex Functions 

§4. Hausdorff Measures and Dimension

§5. Ergodic Theory

§6. Probabilities on Function Spaces

§7. Bessel Functions

§8. Sturm-Liouville Equation

Bibliography

Index of Notation

Index of Terms

Catalogue

标签
缩略图
书名 连续鞅和布朗运动(第3版)
副书名
原作名
作者 (法)瑞韦兹
译者
编者
绘者
出版社 世界图书出版公司
商品编码(ISBN) 9787506291934
开本 24开
页数 606
版次 1
装订 平装
字数
出版时间 2008-03-01
首版时间 2008-03-01
印刷时间 2008-03-01
正文语种
读者对象 青年(14-20岁),研究人员,普通成人
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类 科学技术-自然科学-数学
图书小类
重量 0.75
CIP核字
中图分类号 O211.6
丛书名
印张 26
印次 1
出版地 北京
225
151
28
整理
媒质 图书
用纸 普通纸
是否注音
影印版本 原版
出版商国别 CN
是否套装 单册
著作权合同登记号
版权提供者
定价
印数
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/9 2:00:04