《抽象代数》(作者张勤海)系统地介绍了抽象代数的基本概念、基本方法和基本理论。《抽象代数》分为5章,前两章介绍具有一定深度和广度的群、环、域的一般知识;第3章介绍galois理论,它是群论与域论结合所得到的深刻数学结果的具体体现;第4章介绍模与代数的有关知识;第5章介绍有限群的特征标理论及其初步应用。本书内容丰富、举例众多。特别注意通过分析例子概括出抽象概念。本书包含大量的习题,书末附有习题提示,便于学生自学。
本书可作为高等院校数学系高年级本科生、研究生的教学用书,也可供有关数学工作者阅读。
图书 | 大学数学科学丛书?抽象代数(4) |
内容 | 内容推荐 《抽象代数》(作者张勤海)系统地介绍了抽象代数的基本概念、基本方法和基本理论。《抽象代数》分为5章,前两章介绍具有一定深度和广度的群、环、域的一般知识;第3章介绍galois理论,它是群论与域论结合所得到的深刻数学结果的具体体现;第4章介绍模与代数的有关知识;第5章介绍有限群的特征标理论及其初步应用。本书内容丰富、举例众多。特别注意通过分析例子概括出抽象概念。本书包含大量的习题,书末附有习题提示,便于学生自学。 本书可作为高等院校数学系高年级本科生、研究生的教学用书,也可供有关数学工作者阅读。 目录 前言 本书所用的符号 第1章 群论 1.1 群和子群 1.2 正规子群和商群 1.3 同态和同构 1.4 直积和半直积 1.5 群作用 1.6 Sylow定理 1.7 Jordan―HSlder定理 1.8 可解群和幂零群 1.9 PSL(n,q)单性的证明 第2章 环与域 2.1 基本概念和例子 2.2 理想和同态 2.3 极大理想和素理想 2.4 整环里的因子分解 2.5 域的扩张 2.6 代数扩域 2.7 多项式的分裂域与正规扩 2.8 有限域 2.9 有限可分扩域 第3章 Galois理论 3.1 Galois理论的基本定理 3.2 方程可用根式解的判别准则 3.3 Galois理论的初步应用 第4章 模与代数 4.1 模与子模、商模 4.2 模的同态与同构 4.3 模的直和 4.4 自由模 4.5 主理想环上的有限生成模 4.6 张量积 4.7 代数的有关知识 4.8 半单代数的结构 第5章 结合代数与有限群的表示理论 5.1 结合代数的表示 5.2 群的表示与特征标 5.3 群的特征标表 5.4 有限群特征标理论的初步应用 习题提示 主要参考书目 索引 |
标签 | |
缩略图 | ![]() |
书名 | 大学数学科学丛书?抽象代数(4) |
副书名 | |
原作名 | |
作者 | 张勤海 |
译者 | |
编者 | |
绘者 | |
出版社 | 科学出版社 |
商品编码(ISBN) | 9787030135599 |
开本 | B5 |
页数 | 244 |
版次 | 1 |
装订 | |
字数 | 300.00千字 |
出版时间 | 2004-08-01 |
首版时间 | |
印刷时间 | 2014-01-01 |
正文语种 | |
读者对象 | |
适用范围 | |
发行范围 | |
发行模式 | 实体书 |
首发网站 | |
连载网址 | |
图书大类 | |
图书小类 | |
重量 | |
CIP核字 | |
中图分类号 | O135 |
丛书名 | |
印张 | |
印次 | 7 |
出版地 | |
长 | |
宽 | |
高 | |
整理 | |
媒质 | |
用纸 | |
是否注音 | |
影印版本 | |
出版商国别 | |
是否套装 | |
著作权合同登记号 | |
版权提供者 | |
定价 | |
印数 | |
出品方 | |
作品荣誉 | |
主角 | |
配角 | |
其他角色 | |
一句话简介 | |
立意 | |
作品视角 | |
所属系列 | |
文章进度 | |
内容简介 | |
作者简介 | |
目录 | |
文摘 | |
安全警示 | 适度休息有益身心健康,请勿长期沉迷于阅读小说。 |
随便看 |
|
兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。