首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 机器学习应用案例与设计
内容
内容推荐
机器学习是人工智能的重要技术基础,涉及的内容十分广泛。本书内容涵盖了机器学习的基础知识,主要包括机器学习的概论、统计学习基础、分类、聚类、神经网络、贝叶斯网络、支持向量机、进化计算、文本分析等经典的机器学习理论知识,也包括用于大数据机器学习的分布式机器学习算法、深度学习和加强学习等高等级内容。此外,还介绍了机器学习的热门应用领域技术,并给出了华为机器学习平台上的实验。本书深入浅出、内容全面、案例丰富,每章后都有习题和参考文献,便于巩固学习,适用于高等院校本科生、研究生机器学习、数据分析、数据挖掘等课程的教材,也可作为对机器学习感兴趣的研究人员和工程技术人员的参考资料。
目录
目录

第1章机器学习绪论
1.1机器学习简介 /
1.1.1机器学习简史 /
1.1.2机器学习主要流派 /
1.2人工智能与机器学习的关系 /
1.2.1什么是人工智能 /
1.2.2机器学习、人工智能的关系 /
1.3典型机器学习应用领域 /
1.4机器学习算法 /
1.4.1线性回归 /
1.4.2逻辑回归 /
1.4.3决策树 /
1.4.4支持向量机 /
1.4.5线性支持向量机 /
1.4.6非线性支持向量机 /
1.4.7随机森林 /
1.4.8k-均值算法 /
1.4.9PCA算法 /
1.4.10关联规则学习算法 /
1.5机器学习的一般流程 /
习题 /

第2章数据降维与特征工程
2.1数据降维的基本概念 /
2.1.1数据降维的目的 /
2.1.2数据降维的一般原理 /
2.1.3数据降维的本质 /
2.1.4特征工程的基本概念 /
2.1.5特征工程的目标 /
2.1.6特征工程的本质 /
2.1.7特征工程的特征选取方法 /
2.1.8特征工程的基本原理 /
2.2高维数据降维 /
2.2.1主成分分析 /
2.2.2奇异值分解 /
2.2.3线性判别分析 /
2.2.4局部线性嵌入 /
2.2.5拉普拉斯特征映射 /
2.3特征工程分析 /
2.3.1特征构造 /
2.3.2特征选择 /
2.3.3特征提取 /
2.4模型训练 /
2.4.1模型训练常见术语 /
2.4.2训练数据收集 /
2.5数据降维与特征工程实践 /
2.5.1数据降维应用场景 /
2.5.2数据降维常用工具 /
2.5.3特征工程的应用场景 /
2.5.4特征工程的应用工具 /
2.5.5数据降维面临的挑战 /
2.5.6特征工程面临的挑战 /
习题 /

第3章决策树与分类算法
3.1决策树算法 /
3.1.1分支处理 /
3.1.2连续属性离散化 /
3.1.3过拟合问题 /
3.1.4分类效果评价 /
3.2集成学习 /
3.2.1装袋法 /
3.2.2提升法 /
3.2.3梯度提升决策树 /
3.2.4XGBoost算法 /
3.2.5随机森林 /
3.3决策树应用 /
习题 /

第4章聚类分析
4.1聚类分析概念 /
4.1.1聚类方法分类 /
4.1.2良好聚类算法的特征 /
4.2聚类分析的度量 /
4.2.1外部指标 /
4.2.2内部指标 /
4.3基于划分的聚类 /
4.3.1k-均值算法 /
4.3.2k-medoids算法 /
4.3.3k-prototype算法 /
4.4基于密度的聚类 /
4.4.1DBSCAN算法 /
4.4.2OPTICS算法 /
4.4.3DENCLUE算法 /
4.5基于层次的聚类 /
4.5.1BIRCH聚类 /
4.5.2CURE算法 /
4.6基于网格的聚类 /
4.6.1网格聚类的基本概念 /
4.6.2网格聚类的主要步骤 /
4.6.3基于网格的一些方法 /
4.6.4网格聚类算法的优缺点 /
4.7基于模型的聚类 /
4.7.1概率模型聚类 /
4.7.2模糊聚类 /
4.7.3Kohonen神经网络聚类 /
习题 /

第5章文本分析
5.1文本分析概述 /
5.2文本特征提取及表示 /
5.2.1TF-IDF /
5.2.2信息增益 /
5.2.3互信息 /
5.2.4卡方统计量 /
5.2.5词嵌入 /
5.2.6语言模型 /
5.2.7向量空间模型 /
5.3TF-IDF应用案例 /
5.3.1关键词自动提取 /
5.3.2找相似文章 /
5.3.3自动摘要 /
5.3.4文献检索 /
5.4词法分析 /
5.4.1文本分词 /
5.4.2命名实体识别 /
5.4.3词义消歧 /
5.5句法分析 /
5.6语义分析 /
5.7文本分析的应用 /
5.7.1文本分类 /
5.7.2信息抽取 /
5.7.3问答系统 /
5.7.4情感分析 /
5.7.5摘要生成 /
习题 /

第6章神经网络
6.1神经网络的工作方式和分类 /
6.1.1前馈神经网络 /
6.1.2反馈神经网络 /
6.1.3自组织神经网络 /
6.2神经网络的相关概念 /
6.2.1激活函数 /
6.2.2损失函数 /
6.2.3学习率 /
6.2.4过拟合与网络正则化 /
6.2.5预处理 /
6.2.6训练方式 /
6.2.7模型训练中的问题 /
6.2.8神经网络效果评价 /
6.3神经网络应用 /
习题 /

第7章贝叶斯网络
7.1贝叶斯理论概述 /
7.2贝叶斯概率基础 /
7.2.1概率论 /
7.2.2贝叶斯概率 /
7.3朴素贝叶斯分类模型 /
7.4贝叶斯网络推理 /
7.4.1贝叶斯网络 /
7.4.2贝叶斯网络的学习 /
7.4.3贝叶斯网络的推断 /
7.5贝叶斯网络的应用 /
7.5.1中文分词 /
7.5.2故障诊断 /
7.5.3疾病诊断 /
习题 /

第8章支持向量机
8.1线性可分支持向量机 /
8.1.1间隔与超平面 /
8.1.2支持向量机 /
8.1.3对偶问题求解 /
8.1.4软间隔 /
8.2非线性支持向量机 /
8.2.1非线性支持向量机原理 /
8.2.2常见核函数 /
8.3支持向量机的应用 /
习题 /

第9章联邦机器学习
9.1联邦机器学习基础 /
9.1.1参数服务器 /
9.1.2联邦并行计算类型 /
9.2联邦机器学习框架 /
9.3联邦决策树 /
9.4联邦k-均值算法 /
习题 /

第10章深度学习基础
10.1卷积神经网络 /
10.1.1卷积神经网络简介 /
10.1.2卷积神经网络的结构 /
10.1.3卷积神经网络的训练 /
10.1.4常见卷积神经网络 /
10.2循环神经网络 /
10.2.1RNN基本原理 /
10.2.2长短期记忆网络 /
10.2.3门限循环单元 /
10.2.4循环神经网络的其他改进 /
10.3深度学习流行框架 /
10.3.1Torch /
10.3.2TensorFlow /
10.3.3Caffe /
10.3.4Keras /
10.3.5MxNet /
10.3.6Deeplearning4j /
习题 /

第11章高级深度学习
11.1高级循环神经网络 /
11.1.1词嵌入 /
11.1.2自注意力模型 /
11.1.3多头注意力机制 /
11.1.4Transformer /
11.1.5BERT模型 /
11.2无监督式深度学习 /
11.2.1深度信念网络 /
11.2.2自动编码器网络 /
11.3生成对抗网络 /
11.3.1生成对抗网络基本原理 /
11.3.2常见的生成对抗网络 /
11.4迁移学习 /
习题 /

参考文献
标签
缩略图
书名 机器学习应用案例与设计
副书名
原作名
作者 罗光圣、方志军
译者
编者
绘者
出版社 清华大学出版社
商品编码(ISBN) 9787302672937
开本 其他
页数 268
版次 1
装订
字数 403000
出版时间 2024-09-01
首版时间
印刷时间 2024-09-01
正文语种
读者对象
适用范围
发行范围
发行模式 实体书
首发网站
连载网址
图书大类 教育考试-大中专教材-大学教材
图书小类
重量
CIP核字
中图分类号 TP181
丛书名
印张
印次 1
出版地
整理
媒质
用纸
是否注音
影印版本
出版商国别
是否套装
著作权合同登记号
版权提供者
定价
印数
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/6 8:26:11