本书讲解了经典的高级机器学习算法原理与知识,包括常见的监督学习、无监督学习、概率图模型、核方法、深度神经网络,以及强化学习等内容,同时更强调动手实践。所有算法均利用PyTorch计算框架进行实现,并且在各章节配备实战环节,内容涵盖点击率预估、异常检测、概率图模型变分推断、高斯过程超参数优化、深度强化学习智能体训练等内容。
本书附赠所有案例的源代码及各类学习资料来源,适合具有一定编程基础的人工智能爱好者学习,也是相关从业者和研究人员的学习指南。
| 图书 | PyTorch高级机器学习实战/人工智能科学与技术丛书 |
| 内容 | 内容推荐 本书讲解了经典的高级机器学习算法原理与知识,包括常见的监督学习、无监督学习、概率图模型、核方法、深度神经网络,以及强化学习等内容,同时更强调动手实践。所有算法均利用PyTorch计算框架进行实现,并且在各章节配备实战环节,内容涵盖点击率预估、异常检测、概率图模型变分推断、高斯过程超参数优化、深度强化学习智能体训练等内容。 本书附赠所有案例的源代码及各类学习资料来源,适合具有一定编程基础的人工智能爱好者学习,也是相关从业者和研究人员的学习指南。 |
| 标签 | |
| 缩略图 | ![]() |
| 书名 | PyTorch高级机器学习实战/人工智能科学与技术丛书 |
| 副书名 | |
| 原作名 | |
| 作者 | |
| 译者 | |
| 编者 | 王宇龙 |
| 绘者 | |
| 出版社 | 机械工业出版社 |
| 商品编码(ISBN) | 9787111719960 |
| 开本 | 16开 |
| 页数 | 301 |
| 版次 | 1 |
| 装订 | 平装 |
| 字数 | 413 |
| 出版时间 | 2023-02-01 |
| 首版时间 | 2023-02-01 |
| 印刷时间 | 2023-02-01 |
| 正文语种 | 汉 |
| 读者对象 | |
| 适用范围 | |
| 发行范围 | 公开发行 |
| 发行模式 | 实体书 |
| 首发网站 | |
| 连载网址 | |
| 图书大类 | |
| 图书小类 | |
| 重量 | 634 |
| CIP核字 | 2022207506 |
| 中图分类号 | TP181 |
| 丛书名 | |
| 印张 | 19.5 |
| 印次 | 1 |
| 出版地 | 北京 |
| 长 | |
| 宽 | |
| 高 | |
| 整理 | |
| 媒质 | |
| 用纸 | |
| 是否注音 | |
| 影印版本 | |
| 出版商国别 | |
| 是否套装 | |
| 著作权合同登记号 | |
| 版权提供者 | |
| 定价 | |
| 印数 | |
| 出品方 | |
| 作品荣誉 | |
| 主角 | |
| 配角 | |
| 其他角色 | |
| 一句话简介 | |
| 立意 | |
| 作品视角 | |
| 所属系列 | |
| 文章进度 | |
| 内容简介 | |
| 作者简介 | |
| 目录 | |
| 文摘 | |
| 安全警示 | 适度休息有益身心健康,请勿长期沉迷于阅读小说。 |
| 随便看 |
|
兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。