首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 概率图模型(原理与应用全彩英文版香农信息科学经典)
内容
内容推荐
本书从工程的角度概述了概率图模型(PGMs)。书本涵盖了PGMs每种主要类别的基础知识,包括表示、推理和学习原则,并回顾了每种类型的模型在现实世界中的应用。这些应用来自广泛的学科,突出了贝叶斯分类器、隐马尔可夫模型、贝叶斯网络、动态和时间贝叶斯网络、马尔可夫随机场、影响图和马尔可夫决策过程的许多用途。本书特色:提出了包括PGMs所有主要类别的统一框架;介绍了不同技术的实际应用;该领域研究的最新发展,包括多维贝叶斯分类器、关系图模型和因果模型;每一章的末尾都附有练习、进一步阅读的建议和研究或编程项。
目录
Part I Fundamentals
1 Introduction
1.1 Uncertainty
1.1.1 Effects of Uncertainty
1.2 A Brief History
1.3 Basic Probabilistic Models
1.3.1 An Example
1.4 Probabilistic Graphical Models
1.5 Representation, Inference, and Learning
1.6 Applications
1.7 Overview of the Book
1.8 Additional Reading
References
2 Probability Theory
2.1 Introduction
2.2 Basic Rules
2.3 Random Variables
2.3.1 Two-Dimensional Random Variables
2.4 Information Theory
2.5 Additional Reading
2.6 Exercises
Reference
3 Graph Theory
3.1 Definitions
3.2 Types of Graphs
3.3 Trajectories and Circuits
3.4 Graph Isomorphism
3.5 Trees
3.6 Cliques
3.7 Perfect Ordering
3.8 Ordering and Triangulation Algorithms
3.8.1 Maximum Cardinality Search
3.8.2 Graph Filling
3.9 Additional Reading
3.10 Exercises
Reference
Part II Probabilistic Models
4 Bayesian Classifiers
4.1 Introduction
4.1.1 Classifier Evaluation
4.2 Bayesian Classifier
4.2.1 Naive Bayes Classifier
4.3 Alternative Models: TAN, BAN
4.4 Semi-Naive Bayesian Classifiers
4.5 Multidimensional Bayesian Classifiers
4.5.1 Multidimensional Bayesian Network Classifiers
4.5.2 Bayesian Chain Classifiers
4.6 Hierarchical Classification
4.6.1 Chained Path Evaluation
4.7 Applications
4.7.1 Visual Skin Detection
4.7.2 HIV Drug Selection
4.8 Additional Reading
4.9 Exercises
References
5 Hidden Markov Models
5.1 Introduction
5.2 Markov Chains
5.2.1 Parameter Estimation
5.2.2 Convergence
5.3 Hidden Markov Models
5.3.1 Evaluation
5.3.2 State Estimation
5.3.3 Learning
5.3.4 Extensions
5.4 Applications
5.4.1 PageRank
5.4.2 Gesture Recognition
5.5 Additional Reading
5.6 Exercises
References
6 Markov Random Fields
6.1 Introduction
6.2 Markov Networks
6.2.1 Regular Markov Random Fields
6.3 Gibbs Random Fields
6.4 Inference
6.5 Parameter Estimation
6.5.1 Parameter Estimation with Labeled Data
6.6 Conditional Random Fields
6.7 Applications
6.7.1 Image Smoothing
6.7.2 Improving Image Annotation
6.8 Additional Reading
6.9 Exercises
References
7 Bayesian Networks: Representation and Inference
7.1 Introduction
7.2 Representation
7.2.1 Structure
7.2.2 Parameters
7.3 Inference
7.3.1 Singly Connected Networks: Belief Propagation
7.3.2 Multiple Connected Networks
7.3.3 Approximate Inference
7.3.4 Most Probable Explanation
7.3.5 Continuous Variables
7.4 Applications
7.4.1 Information Validation
7.4.2 Reliability Analysis
7.5 Additional Reading
7.6 Exercises
References
8 Bayesian Networks: Learning
8.1 Introduction
8.2 Parameter Learning
8.2.1 Smoothing
8.2.2 Parameter Uncertainty
8.2.3 Missing Data
8.2.4 Discretization
8.3 Structure Learning
8.3.1 Tree Learning
8.3.2 Learning a Polytree
8.3.3 Search and Score Techniques
8.3.4 Independence Tests Techniques
8.4 Combining Expert Knowledge and Data
8.5 Applications
8.5.1 Air Pollution Model for Mexico City
8.6 Additional Reading
8.7 Exercises
References
9 Dynamic and Temporal Bayesian Networks
9.1 Introduction
9.2 Dynamic Bayesian Networks
9.2.1 Inference
9.2.2 Learning
9.3 Temporal Event Networks
9.3.1 Temporal Nodes Bayesian Networks
9.4 Applications
9.4.1 DBN: Gesture Recognition
9.4.2 TNBN: Predicting HIV Mutational Pathways
9.5 Additional Reading
9.6 Exercises
标签
缩略图
书名 概率图模型(原理与应用全彩英文版香农信息科学经典)
副书名
原作名
作者 (墨)路易斯·恩里克·苏卡
译者
编者
绘者
出版社 世界图书出版公司
商品编码(ISBN) 9787519296957
开本 16开
页数 253
版次 1
装订 平装
字数 253
出版时间 2023-01-01
首版时间 2023-01-01
印刷时间 2023-01-01
正文语种
读者对象 普通大众
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类 科学技术-自然科学-数学
图书小类
重量 436
CIP核字 2022130766
中图分类号 O211
丛书名
印张 18.25
印次 1
出版地 陕西
240
170
14
整理
媒质
用纸
是否注音
影印版本
出版商国别
是否套装
著作权合同登记号
版权提供者
定价
印数
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/12 4:20:44