首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 Python算法交易
内容
内容推荐
虽然算法交易曾经是机构参与者的专属领域,但是现在已经开放给了使用在线平台的小型组织和个人交易者。今天Python及其强大的软件包生态系统是许多交易者首选的工具。在这本非常实用的书中,本书作者向学生、学者及从业者展示了如何在有趣的算法交易领域使用Python。
你将学习几种在不同方面应用Python进行算法交易的方法,例如如何回测交易策略,以及如何与在线交易平台交互。一些非常大的买方和卖方机构都大量使用Python。通过探索系统的构建和部署自动算法交易策略,本书将帮助你实现公平竞争。
作者简介
伊夫·希尔皮斯科(Yves Hilpisch),The Python Quants是一个专注于Python与开源软件在量化金融中应用的团队,而Yves Hilpisch是The Python Quants的创始人与股东。Yves也是CQF项目的计算金融学讲师。他的客户遍及全球金融界,本身也积累了10年Python经验。Yves同时是Python and Open Source for EquantFinance这个会议在法兰克福、伦敦和纽约的组织者。
目录
前言
第1章 Python和算法交易
1.1 Python的金融之道
1.1.1 Python与伪代码
1.1.2 NumPy和向量化
1.1.3 pandas和DataFrame类
1.2 算法交易
1.3 Python的算法交易之道
1.4 本书的重点和先决条件
1.5 交易策略
1.5.1 简单移动平均线
1.5.2 动量策略
1.5.3 均值回归
1.5.4 机器学习和深度学习
1.6 小结
1.7 参考资料和延伸资源
第2章 Python基础架构
2.1 Conda作为软件包管理器
2.1.1 安装Miniconda
2.1.2 Conda的基本操作
2.2 Conda作为虚拟环境管理器
2.3 使用Docker容器
2.3.1 Docker镜像和容器
2.3.2 构建一个带Python的Ubuntu Docker镜像
2.4 使用云实例
2.4.1 RSA公钥私钥
2.4.2 Jupyter Notebook配置文件
2.4.3 Python和Jupyter Lab的安装脚本
2.4.4 编排Droplet初始化脚本
2.5 小结
2.6 参考资料和延伸资源
第3章 处理金融数据
3.1 从不同数据源读取金融数据
3.1.1 数据集
3.1.2 用Python读取CSV文件
3.1.3 使用pandas从CSV文件读取
3.1.4 导出到Excel和JSON
3.1.5 从Excel和JSON读取数据
3.2 使用开放数据源
3.3 Eikon数据API
3.3.1 获取结构化历史数据
3.3.2 获取非结构化历史数据
3.4 高效存储金融数据
3.4.1 存储DataFrame对象
3.4.2 使用TsTables
3.4.3 用SQLite3存储数据
3.5 小结
3.6 参考资料和延伸资源
3.7 Python脚本
第4章 掌握向量化回测
4.1 利用向量化
4.1.1 使用Numpy进行向量化
4.1.2 使用pandas进行向量化
4.2 基于简单移动平均线的策略
4.2.1 入门基础
4.2.2 方法通用化
4.3 基于动量的策略
4.3.1 基础入门
4.3.2 方法通用化
4.4 基于均值回归的策略
4.4.1 基础入门
4.4.2 方法通用化
4.5 数据窥探和过度拟合
4.6 小结
4.7 参考资料和延伸资源
4.8 Python脚本
4.8.1 SMA回测类
4.8.2 动量回测类
4.8.3 均值回归回测类
第5章 通过机器学习预测市场动向
5.1 使用线性回归进行市场走势预测
5.1.1 线性回归快速回顾
5.1.2 价格预测的基本思路
5.1.3 预测指数水平
5.1.4 预测未来收益
5.1.5 预测未来市场方向
5.1.6 基于回归策略的向量化回测
5.1.7 概括方法
5.2 使用机器学习进行市场动向预测
5.2.1 scikit-learn的线性回归
5.2.2 一个简单的分类问题
5.2.3 使用逻辑回归预测市场方向
5.2.4 方法通用化
5.3 使用深度学习进行市场走势预测
5.3.1 再谈简单分类问题
5.3.2 使用深度神经网络预测市场方向
5.3.3 添加不同类型的特征
5.4 小结
5.5 参考资料和延伸资源
5.6 Python脚本
5.6.1 线性回归回测类
5.6.2 分类算法回测类
第6章 构建基于事件回测的类
6.1 回测基础类
6.2 做多回测类
6.3 多空回测类
6.4 小结
6.5 参考资料和延伸资源
6.6 Python脚本
6.6.1 回测基础类
6.6.2 做多回测类
6.6.3 多空回测类
第7章 使用实时数据和套接字
7.1 运行一个简单的实时数据服务器
7.2 连接报价数据客户端
7.3 实时生成交易信号
7.4 使用Plotly可视化流数据
7.4.1 基础部分
7.4.2 三个实时流
7.4.3 三个流的三个子图
7.4.4 流式数据与柱线图
7.5 小结
7.6 参考资料和延伸资源
7.7 Python脚本
7.7.1 样例报价数据服务器
7.7.2 报价数据客户端
7.7.3 动量在线算法
7.7.4 为柱线图提供样例数据的服务器
第8章 使用Oanda进行CFD交易
8.1 开设账户
8.2 Oanda应用程序接口
8.3 获取历史数据
8.3.1 查询可交易的金融工具
8.3.2 基于分钟柱线图回测的动量策略
8.3.3 杠杆和保证金因素
8.4 处理流式数据
8.5 下订单
8.6 实时实施交易策略
8.7 获取账号信息
8.8 小结
8.9 参考资料和延伸资源
8.10 Python脚本
第9章 使用FXCM进行外汇交易
9.1 入门
9.2 获取数据
9.2.1 获取报价数据
9.2.2 获取K线数据
9.3 使用API
9.3.1 获取历史数据
9.3.2 获取流数据
9.3.3 下单
9.3.4 账户信息
9.4 小结
9.5 参考资料和延伸资源
第10章 自动化交易操作
10.1 资本管理
10.1.1 二项式设置中的凯利准则
10.1.2 股票和指数里的凯利准则
10.2 基于机器学习的交易策略
10.2.1 向量回测
10.2.2 最优杠杆
10.2.3 风险分析
10.2.4 持久化模型对象
10.3 实时算法
10.4 基础设施和部署
10.5 日志和监控
10.6 可
标签
缩略图
书名 Python算法交易
副书名
原作名
作者 (德)伊夫·希尔皮斯科
译者 译者:窦衍森//熊博
编者
绘者
出版社 中国电力出版社
商品编码(ISBN) 9787519869694
开本 16开
页数 378
版次 1
装订 平装
字数 433
出版时间 2022-11-01
首版时间 2022-11-01
印刷时间 2022-11-01
正文语种
读者对象 普通大众
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类
图书小类
重量 570
CIP核字 2022167692
中图分类号 TP311.561
丛书名
印张 24.5
印次 1
出版地 北京
整理
媒质
用纸
是否注音
影印版本
出版商国别
是否套装
著作权合同登记号
版权提供者
定价
印数 3000
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/7 20:54:54