首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 马尔科夫过程导论
内容
编辑推荐

To some extent, it would be accurate to summarize the contents of this book as an intolerably protracted description of what happens when either one raises a transition probability matrix P (i.e., all entries (P) are nonnegative and each row of P sums to 1) to higher and higher powers or one exponentiates R(P-I), where R is a diagonal matrix with non-negative entries. Indeed, when it comes right down to it, that is all that is done in this book. However, I, and others of my ilk, would take offense at such a dismissive characterization of the theory of Markov chains and processes with values in a countable state space, and a primary goal of mine in writing this book was to convince its readers that our offense would be warranted.

目录

Preface

Chapter 1 Random Walks A Good Place to Begin

 1.1. Nearest Neighbor Random Wlalks on Z

1.1.1. Distribution at Time n

1.1.2. Passage Times via the Reflection Principle

1.1.3. Some Related Computations

1.1.4. Time of First Return

1.1.5. Passage Times via Functional Equations

 1.2. Recurrence Properties of Random Walks

1.2.1. Random Walks on Zd

1.2.2. An Elementary Recurrence Criterion

1.2.3. Recurrence of Symmetric Random Walk in Zz

1.2.4. nansience in Z3

 1.3. Exercises

Chapter 2 Doeblin’S Theory for Markov Chains

 2.1. Some Generalities

2.1.1. Existence of Markov Chains

2.1.2. Transion Probabilities&Probability Vectors

2.1.3. nansition Probabilities and Functions

2.1.4. The Markov Property

 2.2. Doeblin’S Theory

2.2.1. Doeblin’S Basic Theorem

2.2.2. A Couple of Extensions

2.3. Elements of Ergodic Theory

2.3.1. The Mean Ergodic Theorem

2.3.2. Return Times

2.3.3. Identification of π

 2.4. Exercises

Chapter 3 More about the Ergodic Theory of Markov Chains

 3.1. Classification of States

3.1.1. Classification,Recurrence,and Transience

3.1.2. Criteria for Recurrence and Transmnge

3.1.3. Periodicity

 3.2. Ergodic Theory without Doeblin

3.2.1. Convergence of Matrices

3.2.2. Ab el Convergence

3.2.3. Structure of Stationary Distributions

3.2.4. A Small Improvement

3.2.5. The Mcan Ergodic Theorem Again

3.2.6. A Refinement in The Aperiodic Case

3.2.7. Periodic Structure

 3.3. Exercises

Chapter 4 Markov Processes in Continuous Time

 4.1. Poisson Processes

4.1.1. The Simple Poisson Process

4.1.2. Compound Poisson Processes on Z

 4.2. Markov Processes with Bounded Rates

4.2.1. Basic Construction

4.2.2. The Markov Property

4.2.3. The Q—Matrix and Kolmogorov’S Backward Equation

4.2.4. Kolmogorov’S Forward Equation

4.2.5. Solving Kolmogorov’S Equation

4.2.6. A Markov Process from its Infinitesimal Characteristics

 4.3. Unbounded Rates

4.3.1. Explosion

4.3.2. Criteria for Non.explosion or Explosion

4.3.3. What to Do When Explosion Occurs

 4.4. Ergodic Properties.

4.4.1. Classification of States

4.4.2. Stationary Measures and Limit Theorems

4.4.3. Interpreting πii

 4.5. Exercises

Chapter 5 Reversible Markov Proeesses

 5.1. R,eversible Markov Chains

5.1.1. Reversibility from Invariance

5.1.2. Measurements in Quadratic Mean

5.1.3. The Spectral Gap

5.1.4. Reversibility and Periodicity

5.1.5. Relation to Convergence in Variation

 5.2. Dirichlet Forms and Estimation of β

5.2.1. The Dirichlet Fo·rm and Poincar4’S Inequality,

5.2.2. Estimating β+

5.2.3. Estimating β-

 5.3. Reversible Markov Processes in Continuous Time

5.3.1. Criterion for Reversibility

5.3.2. Convergence in L2(π) for Bounded Rates

5.3.3. L2(π)Convergence Rate in General

5.3.4. Estimating λ

 5.4. Gibbs States and Glauber Dynamics

5.4.1. Formulation

5.4.2. The Dirichlet Form

 5.5. Simulated Annealing

5.5.1. The Algorithm

5.5.2. Construction of the Transition Probabilities

5.5.3. Description of the Markov Process

5.5.4. Choosing a Cooling Schedule

5.5.5. Small Improvements

 5.6. Exercises

Chapter 6 Some Mild Measure Theory

 6.1. A Description of Lebesgue's Measure Theory

6.1.1. Measure Spaces

6.1.2. Some Consequences of Countable Additivity

6.1.3. Generating a-Algebras

6.1.4. Measurable Functions

6.1.5. Lebesgue Integration

6.1.6. Stability Properties of Lebesgue Integration

6.1.7. Lebesgue Integration in Countable Spaces

6.1.8. Fubini's Theorem

 6.2. Modeling Probability

6.2.1. Modeling Infinitely Many Tosses of a Fair Coin

 6.3. Independent Random Variables

6.3.1. Existence of Lots of Independent Random Variables

 6.4. Conditional Probabilities and Expectations

6.4.1. Conditioning with Respect to Random Variables

Notation

References

Index

标签
缩略图
书名 马尔科夫过程导论
副书名
原作名
作者 (美)丹尼尔斯特鲁克
译者
编者
绘者
出版社 世界图书出版公司
商品编码(ISBN) 9787510004483
开本 24开
页数 171
版次 1
装订 平装
字数
出版时间 2009-04-01
首版时间 2009-04-01
印刷时间 2009-04-01
正文语种
读者对象 青年(14-20岁),研究人员,普通成人
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类 科学技术-自然科学-数学
图书小类
重量 0.24
CIP核字
中图分类号 O211.62
丛书名
印张 8
印次 1
出版地 北京
225
149
9
整理
媒质 图书
用纸 普通纸
是否注音
影印版本 原版
出版商国别 CN
是否套装 单册
著作权合同登记号
版权提供者
定价
印数
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/17 16:26:36