首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 卫星动力学中的倾角函数
内容
内容推荐
Inclination function is a kind of special function commonly-used in thesatellite dynamics. With the technical development and intensive study, theorder of inclination function to be calculated becomes higher and higher. For the high-precision computation of inclination function,this bookletintroduced the available methods, put forward new methods,gave theirFORTRAN program, and studied their stability.
This booklet can be used as a reference for scholars of astronomy and earthscience, and can be also used as a textbook of the graduates.
目录
Preface
1 Introduction
1.1 Introduction of inclination function
1.2 Other definitions of IncFun
1.3 Requirements of satellite dynamics for IncFun
1.3.1 Normalized IncFun and its derivatives
1.3.2 Kernel of IncFun
1.3.3 Calculating order and storage of IncFun
1.4 About this book
2 Expressions of IncFun and its derivative
2.1 Frequently-used notations of IncFun
2.1.1 Normalized IncFun
2.1.2 Quasi-normalized IncFun
2.1.3 Kernel of IncFun
2.1.4 Gooding's notation
2.1.5 Emeljanov's notation
2.2 Series expressions of IncFun
2.2.1 Single summation expression
2.2.2 Dual summation expression
2.2.3 Triple summation expression
2.3 Definite integral expression of IncFun
2.4 Jacobi polynomial expression of IncFun
2.5 Hypergeometric series expression of IncFun
2.5.1 Expressions in three areas
2.5.2 Expression suited to areas A and B
2.5.3 Unified hypergeometric series expression
2.6 d-function expression of IncFun
2.6.1 d-function expression
2.6.2 Expression of inclination matrix element
2.6.3 Timoshkova's expression
2.6.4 Kinoshita's expression
2.6.5 Comparison of four expressions
2.7 Tisserand polynomial expression of IncFun
2.8 Calculating method of the derivatives of IncFun
2.8.1 The 1" method
2.8.2 The 24method
2.8.3 The 3"method
2.9 Primary properties of IncFun
3 Recursion of inclination function
3.1 Classification of recursion
3.1.1 Classification with special function used
3.1.2 Classification with recursion index
3.1.3 Classification with recursive function
3.2 Starting values for recursion of IncFun
3.2.1 Starting values for L-plane recursion
3.2.2 Starting values for M-plane recursion
3.3 Recursion using recursion relations of Legendre polynomial:Giacaglia's
formulae
3.3.1 The first set of formulae
3.3.2 The second set of formulae
3.3.3 The third set of formulae
3.4 Recursion using recursion relations of Jacobi polynomial
3.4.1 Primary recursion relations of Jacobi polynomial
3.4.2 Several practical recursions
3.4.3 Formulae of Allan's recursion
3.4.4 Formulae of Gooding's recursion
3.5 Recursion using recursion formula of hypergeometric series
3.5.1 Important property of recursion formula
3.5.2 Several practical recursions
3.6 Recursion using recursion formula of d-function
3.6.1 Blanco recursion
3.6.2 Risbo recursion
3.7 Stability analysis of recursion
3.8 Preliminary analysis for algorithms with high-precision and high-stability
3.8.1 Difficulty of the Mk(I+)recursion
3.8.2 Methods of overcoming this difficulty
4 Computation method of inclination function
4.1 Analytical method
4.1.1 For case m-k<0
4.1.2 For case m-k≥0
4.1.3 Loss of precision of analytical method and its causes
4.2 Definite integral method
4.2.1 Outline of the method
4.2.2 Computation method of normalized Legendre polynomials
4.2.3 Selection of numerical integral formula
4.3 Kostelecky-Wnuk's method
4.4 Giacaglia's method
4.5 Gooding's method
4.6 Modified Gooding's method
4.7 Emeljanov's method
4.8 Modified Emelianov's method
4.9 Jacobi polynomial method
4.10 d-function method
4.11 L-plane recursion method
5 Computation program
5.1 Analytical method
5.2 Definite integral method
5.3 Kostelecky-Wnuk's method
5.4 Giacaglia's method
5.5 Simplified Gooding's method
5.6 Modified Gooding's method
5.7 Emeljanov's method
5.8 Modified Emeljanov's method
5.9 Jacobi polynomial method
5.10 d-function method
5.11 L-plane recursion method
6 Comparison and evaluation
6.1 Computation accuracy
6.1.1 Assessment standard and accuracy index
6.1.2 Computation results of the accuracy index
6.1.3 Comparison inde
标签
缩略图
书名 卫星动力学中的倾角函数
副书名
原作名
作者
译者
编者 Wu Lianda//Wang Hongbo//Ma Jingyuan
绘者
出版社 科学出版社
商品编码(ISBN) 9787030358578
开本 16开
页数 180
版次 1
装订 平装
字数
出版时间 2012-01-01
首版时间 2012-01-01
印刷时间 2012-01-01
正文语种
读者对象 普通大众
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类 科学技术-自然科学-数学
图书小类
重量 285
CIP核字
中图分类号
丛书名
印张 11.25
印次 1
出版地 北京
238
168
10
整理
媒质
用纸
是否注音
影印版本
出版商国别 CN
是否套装
著作权合同登记号
版权提供者
定价
印数
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/6 16:24:58