本书包括复数与复变函数、全纯函数、全纯函数的积分表示、全纯函数的Taylor展开及其应用、全纯函数的Laurent展开及其应用、全纯开拓、共形映射、调和函数和多复变数全纯函数等九章内容,讲述了复变函数论的基本理论与方法。作为一种尝试,本书引进了非齐次的Cauchy积分公式,并用它给出了一维?问题的解及其应用。本书还扼要地介绍了次调和函数和多复变函数理论。每节后都附有足够数量的习题,供读者练习。
本书可作为大学本科数学系各专业复变函数课程的教材,也可供自学者参考。
图书 | 复变函数 |
内容 | 内容推荐 本书包括复数与复变函数、全纯函数、全纯函数的积分表示、全纯函数的Taylor展开及其应用、全纯函数的Laurent展开及其应用、全纯开拓、共形映射、调和函数和多复变数全纯函数等九章内容,讲述了复变函数论的基本理论与方法。作为一种尝试,本书引进了非齐次的Cauchy积分公式,并用它给出了一维?问题的解及其应用。本书还扼要地介绍了次调和函数和多复变函数理论。每节后都附有足够数量的习题,供读者练习。 本书可作为大学本科数学系各专业复变函数课程的教材,也可供自学者参考。 目录 前言 第1章 复数与复变函数 1.1 复数的定义及其运算 1.2 复数的几何表示 1.3 扩充平面和复数的球面表示 1.4 复数列的极限 1.5 开集、闭集和紧集 1.6 曲线和域 1.7 复变函数的极限和连续性 第2章 全纯函数 2.1 复变函数的导数 2.2 Cauchy-Riemann方程 2.3 导数的几何意义 2.4 初等全纯函数 2.5 分式线性变换 第3章 全纯函数的积分表示 3.1 复变函数的积分 3.2 Cauchy积分定理 3.3 全纯函数的原函数 3.4 Cauchy积分公式 3.5 Cauchy积分公式的一些重要推论 3.6 非齐次Cauchy积分公式 3.7 一维?问题的解 第4章 全纯函数的Tayior展开及其应用 4.1 Weierstrass定理 4.2 幂级数 4.3 全纯函数的Taylor展开 4.4 辐角原理和Rouch6定理 4.5 最大模原理和Schwarz引理 第5章 全纯函数的L,aurent展开及其应用 5.1 全纯函数的Laurent展开 5.2 孤立奇点 5.3 整函数与亚纯函数、 5.4 残数定理 5.5 利用残数定理计算定积分 5.6 一般域上的Mittag-Leffler定理、Weierstrass因子分解定理和插值定理 5.7 特殊域上的Mittag-Leffler定理、Weierstrass因子分解定理和Blaschke乘积 第6章 全纯开拓 6.1 Schwarz对称原理 6.2 幂级数的全纯开拓 6.3 多值全纯函数与单值性定理 第7章 共形映射 7.1 正规族 7.2 Riemann映射定理 7.3 边界对应定理 7.4 Schwarz-Christoffel公式 第8章 调和函数与次调和函数 8.1 平均值公式与极值原理 8.2 圆盘上的Dirichlet问题 8.3 上半平面的Dirichlet问题 8.4 次调和函数 第9章 多复变数全纯函数与全纯映射 9.1 多复变数全纯函数的定义 9.2 多圆柱的Cauchy积分公式 9.3 全纯函数在Reinhardt域上的展开式 9.4 全纯映射的导数 9.5 Cartan定理 9.6 球的全纯自同构和Poincare定理 名词索引 |
标签 | |
缩略图 | ![]() |
书名 | 复变函数 |
副书名 | |
原作名 | |
作者 | |
译者 | |
编者 | 史济怀//刘太顺 |
绘者 | |
出版社 | 中国科学技术大学出版社 |
商品编码(ISBN) | 9787312009990 |
开本 | 16开 |
页数 | 357 |
版次 | 1 |
装订 | 平装 |
字数 | 300 |
出版时间 | 1998-12-01 |
首版时间 | 1998-12-01 |
印刷时间 | 2021-03-01 |
正文语种 | 汉 |
读者对象 | 本科及以上 |
适用范围 | |
发行范围 | 公开发行 |
发行模式 | 实体书 |
首发网站 | |
连载网址 | |
图书大类 | 科学技术-自然科学-数学 |
图书小类 | |
重量 | 390 |
CIP核字 | 199833407 |
中图分类号 | O174.5 |
丛书名 | |
印张 | 11.5 |
印次 | 5 |
出版地 | 安徽 |
长 | 203 |
宽 | 140 |
高 | 18 |
整理 | |
媒质 | |
用纸 | |
是否注音 | |
影印版本 | |
出版商国别 | |
是否套装 | |
著作权合同登记号 | |
版权提供者 | |
定价 | |
印数 | |
出品方 | |
作品荣誉 | |
主角 | |
配角 | |
其他角色 | |
一句话简介 | |
立意 | |
作品视角 | |
所属系列 | |
文章进度 | |
内容简介 | |
作者简介 | |
目录 | |
文摘 | |
安全警示 | 适度休息有益身心健康,请勿长期沉迷于阅读小说。 |
随便看 |
|
兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。