首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 积分几何与几何概率
内容
编辑推荐

Now available in the Cambridge Mathematical Library, the classic work from Luis Santalo. Integral geometry originated with problems on geometrical probability and convex bodies. Its later developments, however, have proved useful in several fields ranging from pure mathematics (measure theory, continuous groups) to technical and applied disciplines (pattern recognition, stereology). The book is a systematic exposition of the theory and a compilation of the main results in the field. The volume can be used to complement courses on differential geometry, Lie groups or probability, or differential geometry. It is ideal both as a reference and for those wishing to enter the field.

目录

Editor's Statement

Foreword

Preface

Part I: INTEGRAL GEOMETRY IN THE PLANE

Chapter 1. Convex Sets in the Plane

 1. Introduction

 2. Envelope of a Family of Lines

 3. Mixed Areas of Minkowski

 4. Some Special Convex Sets

 5. Surface Area of the Unit Sphere and Volume of the Unit Ball

 6. Notes and Exercises

Chapter 2. Sets of Points and Poisson Processes in the Plane

 1. Density for Sets of Points

 2. First Integral Formulas

 3. Sets of Triples of Points

 4. Homogeneous Planar Poisson Point Processes

 5. Notes

Chapter 3. Sets of Lines in the Plane

 1. Density for Sets of Lines

 2. Lines That Intersect a Convex Set or a Curve

 3. Lines That Cut or Separate Two Convex Sets

 4. Geometric Applications

 5. Notes and Exercises

Chapter 4. Pairs of Points and Pairs of Lines

 1. Density for Pairs of Points

 2. Integrals for the Power of the Chords of a Convex Set

 3. Density for Pairs of Lines

 4. Division of the Plane by Random Lines

 5. Notes

Chapter 5. Sets of Strips in the Plane

 1. Density for Sets of Strips

 2. Buffon's Needle Problem

 3. Sets of Points, Lines, and Strips

 4. Some Mean Values

 5. Notes

Chapter 6. The Group of Motions in the Plane: Kinematic Density

 1. The Group of Motions in the Plane

 2. The Differential Forms on m

 3. The Kinematic Density

 4. Sets of Segments

 5. Convex Sets That Intersect Another Convex Set

 6. Some Integral Formulas

 7. A Mean Value; Coverage Problems

 8. Notes and Exercises

Chapter 7. Fundamental Formulas of Poincare and Blaschke

 1. A New Expression for the Kinematic Density

 2. Poincare's Formula

 3. Total Curvature of a Closed Curve and of a Plane Domain

 4. Fundamental Formula of Blaschke

 5. The lsoperimetric Inequality

 6. Hadwiger's Conditions for a Domain to Be Able to Contain Another

 7. Notes

Chapter 8. Lattices of Figures

 1. Definitions and Fundamental Formula

 2. Lattices of Domains

 3. Lattices of Curves

 4. Lattices Of Points

 5. Notes and Exercise

Part I1. GENERAL INTEGRAL GEOMETRY

Chapter 9. Differential Forms and Lie Groups

 1. Differential Forms

 2. Pfaffian Differential Systems

 3. Mappings of Differentiable Manifolds

 4. Lie Groups; Left and Right Translations

 5. Left-lnvariant Differential Forms

 6. Maurer-Cartan Equations

 7. lnvariant Volume Elements of a Group: Unimodular Groups

 8. Notes and Exercises

Chapter 10. Density and Measure in Homogeneous Spaces

 1. Introduction

 2. lnvariant Subgroups and Quotient Groups

 3. Other Conditions for the Existence of a Density on Homo-geneous Spaces

 4. Examples

 5. Lie Transformation Groups

 6. Notes and Exercises

Chapter 11. The Affine Groups

 1. The Groups of Affine Transformations

 2. Densities for Linear Spaces with Respect to Special Homo-geneous Affinities

 3. Densities for Linear Subspaces with Respect to the Special Nonhomogeneous Affine Group

 4. Notes and Exercises

Chapter 12. The Group of Motions in En

 1. Introduction

 2. Densities for Linear Spaces in En

 3. A Differential Formula

 4. Density for r-Planes about a Fixed q-Plane

 5. Another Form of the Density for r-Planes in En

 6. Sets of Pairs of Linear Spaces

 7. Notes

Part III INTEGRAL GEOMETRY IN En

Chapter 13. Convex Sets in En

 1. Convex Sets and Quermassintegrale

 2. Cauchy's Formula

 3. Parallel Convex Sets; Steiner's Formula

 4. Integral Formulas Relating to the Projections of a Convex Set on Linear Subspaces

 5. Integrals of Mean Curvature

 6. Integrals of Mean Curvature and Quermassintegrale

 7. Integrals of Mean Curvature of a Flattened Convex Body

 8. Notes

Chapter 14. Linear Subspaces, Convex Sets, and Compact Manifolds

 1. Sets of r-Planes That Intersect a Convex Set

 2. Geometric Probabilities

 3. Crofton's Formulas in En

 4. Some Relations between Densities of Linear Subspaces

 5. Linear Subspaces That Intersect a Manifold

 6. Hypersurfaces and Linear Spaces

 7. Notes

Chapter 15. The Kinematic Density in En

 1. Formulas on Densities

 2. Integral of the Volume σr+q-n(Mr∩Mq)

 3. A Differential Formula

 4. The Kinematic Fundamental Formula

 5. Fundamental Formula for Convex Sets

 6. Mean Values for the Integrals of Mean Curvature

 7. Fundamental Formula for Cylinders

 8. Some Mean Values

 9. Lattices in En.

 10. Notes and Exercise

Chapter 16. Geometric and Statistical Applications; Stereology

 1. Size Distribution of Particles Derived from the Size Distribution of Their Sections

 2. Intersection with Random Planes

 3. Intersection with Random Lines

 4. Notes

Part IV. INTEGRAL GEOMETRY IN SPACES OF CONSTANT CURVATURE

Chapter 17. Noneuclidean Integral Geometry

 1. The n-Dimensional Noneuclidean Space

 2. The Gauss-Bonnet Formula for Noneuclidean Spaces

 3. Kinematic Density and Density for r-Planes

 4. Sets of r-Planes That Meet a Fixed Body

 5. Notes

Chapter 18. Crofton's Formulas and the Kinematic Fundamental Formula in Noneuclidean Spaces

 1. Crofton's Formulas

 2. Dual Formulas in Elliptic Space

 3. The Kinematic Fundamental Formula in Noneuclidean Spaces

 4. Steiner's Formula in Noneuclidean Spaces

 5. An Integral Formula for Convex Bodies in Elliptic Space

 6. Notes

Chapter 19. Integral Geometry and Foliated Spaces; Trends in Integral Geometry

 1. Foliated Spaces

 2. Sets of Geodesics in a Riemann Manifold

 3. Measure of Two-Dimensional Sets of Geodesics

 4. Measure of(2n - 2)-Dimensional Sets of Geodesics

 5. Sets of Geodesic Segments

 6. Integral Geometry on Complex Spaces

 7. Symplectic Integral Geometry

 8. The Integral Geometry of Gelfand

 9. Notes

Appendix. Differential Forms and Exterior Calculus

 1. Differential Forms and Exterior Product

 2. Two Applications of the Exterior Product

 3. Exterior Differentiation

 4. Stokes' Formula

 5. Comparison with Vector Calculus in Euclidean Three-Dimensional Space

 6. Differential Forms over Manifolds

Bibliography and References

Author Index

Subject index

标签
缩略图
书名 积分几何与几何概率
副书名
原作名
作者 (阿根廷)路易斯桑塔洛
译者
编者
绘者
出版社 世界图书出版公司
商品编码(ISBN) 9787510004933
开本 24开
页数 404
版次 1
装订 平装
字数
出版时间 2009-05-01
首版时间 2009-05-01
印刷时间 2009-05-01
正文语种
读者对象 研究人员,普通成人
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类 科学技术-自然科学-数学
图书小类
重量 0.524
CIP核字
中图分类号 O186.2
丛书名
印张 18
印次 1
出版地 北京
224
150
18
整理
媒质 图书
用纸 普通纸
是否注音
影印版本 原版
出版商国别 CN
是否套装 单册
著作权合同登记号
版权提供者
定价
印数
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/5 5:58:48