| 图书 | 深度学习 |
| 内容 | 作者简介 龙飞,不错工程师,本科毕业于南京大学,博士毕业于清华大学,香港科技大学博士后。曾供职于中国电子科技集团公司第五十四研究所。现任中国搜索创新研发部总监。负责公司互联网创新产品和人工智能、大数据相关项目的研发。主持并参与了国搜识图、国搜学术、国搜图书等平台和频道的研发与上线。主要研究方向为网络路由、无线网状网络,近年涉足深度学习、数据挖掘领域。在靠前外发表学术论文20余篇,获得软件著作权5项,并著有中文专著2部,英文专著1部,译著2部。 目录 目录章绪论1.1引言1.2基本概念1.2.1回归、分类、聚类1.2.2监督学习、非监督学习、半监督学习、强化学习1.2.3感知机、神经网络1.3发展历程1.4相关学者与会议或赛事1.5本章小结参考文献第2章回归2.1线性回归2.1.1问题描述2.1.2问题求解2.1.3工具实现2.2逻辑回归2.2.1问题描述2.2.2问题求解2.2.3工具实现2.3本章小结参考文献第3章人工神经网络3.1Rosenblatt感知机3.1.1训练方法3.1.2算法实例3.1.3梯度下降3.2人工神经网络3.2.1网络架构3.2.2训练方法3.2.3算法实例3.3本章小结参考文献深度学习:入门与实践目录第4章Caffe简介4.1CNN原理4.1.1卷积4.1.2池化4.1.3LeNet54.2Caffe架构4.2.1Blob类4.2.2Layer类4.2.3Net类4.2.4Solver类4.3Caffe应用实例4.3.1车型识别4.3.2目标检测4.4本章小结参考文献第5章TensorFlow简介5.1TensorFlow架构5.2TensorFlow简单应用5.2.1TensorFlow安装5.2.2线性回归5.3TensorFlow不错应用5.3.1MNIST手写数字识别5.3.2车型识别5.4本章小结参考文献第6章强化学习简介6.1强化学习基本原理6.2AlphaGo基本架构6.3其他趣味应用6.4本章小结参考文献后记 内容推荐 本书是一本关于深度学习的入门读物,阐述了深度学习的发展历程、相关基本概念和工作原理。介绍了两个当前流行的深度学习工具:Caffe和TensorFlow。初步探讨了强化学习的基本原理和应用。为了能让初学者快速上手,本书注重从总体框架和脉络上整体把握深度学习技术,同时在阐 |
| 标签 | |
| 缩略图 | ![]() |
| 书名 | 深度学习 |
| 副书名 | |
| 原作名 | |
| 作者 | 龙飞,王永兴 |
| 译者 | |
| 编者 | |
| 绘者 | |
| 出版社 | 清华大学出版社 |
| 商品编码(ISBN) | 9787302482789 |
| 开本 | 24cm |
| 页数 | 189 |
| 版次 | 1 |
| 装订 | 平装 |
| 字数 | 305千字 |
| 出版时间 | 2017-10-01 |
| 首版时间 | 2017-10-01 |
| 印刷时间 | 2017-10-01 |
| 正文语种 | CHI |
| 读者对象 | 本书适合有志于从事人工智能、深度学习相关研究的信息类高年级本科生或研究生阅读,也可供业界准备或正在从事深度学习、机器视觉等相关研发工作的工程技术人员参考 |
| 适用范围 | |
| 发行范围 | |
| 发行模式 | 实体书 |
| 首发网站 | |
| 连载网址 | |
| 图书大类 | 科学技术-自然科学-自然科普 |
| 图书小类 | |
| 重量 | |
| CIP核字 | |
| 中图分类号 | TP181 |
| 丛书名 | |
| 印张 | |
| 印次 | 1 |
| 出版地 | |
| 长 | |
| 宽 | |
| 高 | |
| 整理 | |
| 媒质 | |
| 用纸 | |
| 是否注音 | |
| 影印版本 | |
| 出版商国别 | |
| 是否套装 | |
| 著作权合同登记号 | |
| 版权提供者 | |
| 定价 | 49.00 |
| 印数 | |
| 出品方 | |
| 作品荣誉 | |
| 主角 | |
| 配角 | |
| 其他角色 | |
| 一句话简介 | |
| 立意 | |
| 作品视角 | |
| 所属系列 | |
| 文章进度 | |
| 内容简介 | |
| 作者简介 | |
| 目录 | |
| 文摘 | |
| 安全警示 | 适度休息有益身心健康,请勿长期沉迷于阅读小说。 |
| 随便看 |
|
兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。