首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 Fractional Partial Differential Equations and their Numerical Solutions(英文版)(精)
内容
目录

Preface

Chapter 1 Physics Background

 1.1 Origin of the fractional derivative

 1.2 Anomalous diffusion and fractional advection-diffusion

1.2.1 The random walk and fractional equations

1.2.2 Fractional advection-diffusion equation

1.2.3 Fractional Fokker-Planck equation

1.2.4 Fractional Klein-Framers equation

 1.3 Fractional quasi-geostrophic equation

 1.4 Fractional nonlinear SchrSdinger equation

 1.5 Fractional Ginzburg-Landau equation

 1.6 Fractional Landau-Lifshitz equation

 1.7 Some applications of fractional differential equations

Chapter 2 Fractional Calculus and Fractional Differential Equations

 2.1 Fractional integrals and derivatives

2.1.1 Riemann-Liouville fractional integrals

2.1.2 R-L fractional derivatives

2.1.3 Laplace transforms of R-L fractional derivatives

2.1.4 Caputo's definition of fractional derivatives

2.1.5 Weyl's definition for fractional derivatives

 2.2 Fractional Laplacian

2.2.1 Definition and properties

2.2.2 Pseudo-differential operator

2.2.3 Riesz potential and Bessel potential

2.2.4 Fractional Sobolev space

2.2.5 Commutator estimates

 2.3 Existence of solutions

 2.4 Distributed order differential equations

2.4.1 Distributed order diffusion-wave equation

2.4.2 Initial boundary value problem of distributed order

 2.5 Appendix A: the Fourier transform

 2.6 Appendix B: Laplace transform

 2.7 Appendix C: Mittag-Leffler function

2.7.1 Gamma function and Beta function

2.7.2 Mittag-Leffler function

Chapter 3 Fractional Partial Differential Equations

 3.1 Fractional diffusion equation

 3.2 Fractional nonlinear SchrSdinger equation

3.2.1 Space fractional nonlinear SchrSdinger equation

3.2.2 Time fractional nonlinear Schr5dinger equation

3.2.3 Global well-posedness of the one-dimensional fractional nonlinear SchrSdinger equation

 3.3 Fractional Ginzburg-Landau equation

3.3.1 Existence of weak solutions

3.3.2 Global existence of strong solutions

3.3.3 Existence of attractors

 3.4 Fractional Landau-Lifshitz equation

3.4.1 Vanishing viscosity method

3.4.2 Ginzburg-Landau approximation and asymptotic limit

3.4.3 Higher dimensional case-Galerkin approximation

3.4.4 Local well-posedness

 3.5 Fractional QG equations

3.5.1 Existence and uniqueness of solutions

3.5.2 Inviscid limit

3.5.3 Decay and approximation

3.5.4 Existence of attractors

 3.6 Fractional Boussinesq approximation

 3.7 Boundary value problems

Chapter 4 Numerical Approximations in Fractional Calculus

 4.1 Fundamentals of fractional calculus

 4.2 G-Algorithm for Riemann-Liouville fractional derivative

 4.3 D-Algorithm for Riemann-Liouville fractional derivative

 4.4 R-Algorithm for Riemann-Liouville fractional integral

 4.5 L-Algorithm for fractional derivative

 4.6 General form of fractional difference quotient approximations

 4.7 Extension of integer-order numerical differentiation and integration

4.7.1 Extension of backward and central difference quotient schemes

4.7.2 Extension of interpolation-type integration quadrature formulas

4.7.3 Extension of linear multi-step method: Lubich fractional linear multi-step method

 4.8 Applications of other approximation techniques

4.8.1 Approximation of fractional integral and derivative of periodic function using Fourier Series

4.8.2 Short memory principle

Chapter 5 Numerical Methods for the Fractional Ordinary Differential Equations

 5.1 Solution of fractional linear differential equation

 5.2 Solution of the general fractional differential equations

5.2.1 Direct method

5.2.2 Indirect method

Chapter 6 Numerical Methods for Fractional Partial Differential Equations

 6.1 Space fractional advection-diffusion equation

 6.2 Time fractional partial differential equation

6.2.1 Finite difference scheme

6.2.2 Stability analysis: Fourier-von Neumann method

6.2.3 Error analysis

 6.3 Time-space fractional partial differential equation

6.3.1 Finite difference scheme

6.3.2 Stability and convergence analysis

 6.4 Numerical methods for non-linear fractional partial differential equations

6.4.1 Adomina decomposition method

6.4.2 Variational iteration method

Bibliography

编辑推荐

Boling Guo、Xueke Pu、Fenghui Huang编著的这本《Fractional Partial Differential Equations and their Numerical Solutions(英文版)》共分6章,主要涉及分数阶偏微分方程的理论分析以及数值计算。第1章着重介绍分数阶导数的由来以及一些分数阶偏微分方程的物理背景;第2章介绍Riemann-Liouville等分数阶导数以及分数阶Sobolev空间、交换子估计等常用的工具;第3章从理论的角度讨论一些重要的偏微分方程;从第4章开始重点讨论分数阶偏微分方程的数值计算,介绍了有限差分法、级数逼近法(主要是Adornian分解和变分迭代法)、有限元法以及谱方法、无网格法等计算方法。本书涵盖了该领域的一些前沿结果以及作者目前的一些研究结果。

内容推荐
本书共分6章, 主要涉及分数阶偏微分方程的理论分析以及数值计算。第1章着重介绍分数阶导数的由来以及一些分数阶偏微分方程的物理背景; 第2章介绍Riemann-Liouville等分数阶导数以及分数阶Sobolev空间、交换子估计等常用的工具; 第3章从理论的角度讨论一些重要的偏微分方程; 从第4章开始重点讨论分数阶偏微分方程的数值计算, 介绍了有限差分法、级数逼近法 (主要是Adornian分解和变分迭代法)、有限元法以及谱方法、无网格法等计算方法。
标签
缩略图
书名 Fractional Partial Differential Equations and their Numerical Solutions(英文版)(精)
副书名
原作名
作者 Boling Guo//Xueke Pu//Fenghui Huang
译者
编者
绘者
出版社 科学出版社
商品编码(ISBN) 9787030432704
开本 16开
页数 335
版次 1
装订 精装
字数
出版时间 2015-01-01
首版时间 2015-01-01
印刷时间 2015-01-01
正文语种
读者对象 青年(14-20岁),研究人员,普通成人
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类 科学技术-自然科学-数学
图书小类
重量 0.588
CIP核字
中图分类号 O241.82
丛书名
印张 20.94
印次 1
出版地 北京
241
164
19
整理
媒质 图书
用纸 普通纸
是否注音
影印版本 原版
出版商国别 CN
是否套装 单册
著作权合同登记号
版权提供者
定价
印数
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/6 6:09:38