首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 人工智能在量化交易中的应用与实战
内容
目录
第1章 人工智能快速入门 / 1
1.1 初识人工智能 / 2
1.1.1 什么是人工智能 / 2
1.1.2 为什么要学习人工智能 / 2
1.2 智能概述 / 4
1.2.1 智能类型 / 4
1.2.2 智能的组成 / 6
1.3 人工智能的研究与应用领域 / 8
1.3.1 专家系统 / 8
1.3.2 自然语言理解 / 9
1.3.3 机器学习 / 9
1.3.4 机器定理证明 / 10
1.3.5 自动程序设计 / 11
1.3.6 分布式人工智能 / 12
1.3.7 机器人学 / 13
1.3.8 模式识别 / 14
1.3.9 人机博弈 / 14
1.3.10 计算机视觉 / 15
1.3.11 软计算 / 15
1.3.12 智能控制 / 16
1.3.13 智能规划 / 17
1.4 人工智能的开发语言 / 18
1.4.1 为什么使用Python来开发人工智能 / 18
1.4.2 Python的下载和安装 / 18
1.4.3 Python程序的编写 / 21
1.4.4 利用量化交易平台编写Python程序 / 24
1.5 人工智能的发展历史 / 27
1.5.1 计算机时代 / 27
1.5.2 大量程序 / 28
1.5.3 强弱人工智能 / 29
第2章 Python 编程基础 / 31
2.1 Python的基本数据类型 / 32
2.1.1 数值类型 / 32
2.1.2 字符串 / 34
2.2 变量与赋值 / 37
2.2.1 变量命名规则 / 37
2.2.2 变量的赋值 / 38
2.3 Python的基本运算 / 39
2.3.1 算术运算 / 39
2.3.2 赋值运算 / 41
2.3.3 位运算 / 42
2.4 Python的选择结构 / 43
2.4.1 关系运算 / 43
2.4.2 逻辑运算 / 45
2.4.3 if 语句 / 46
2.4.4 嵌套 if 语句 / 48
2.5 Python的循环结构 / 49
2.5.1 while循环 / 50
2.5.2 while 循环使用else语句 / 51
2.5.3 无限循环 / 51
2.5.4 for循环 / 52
2.5.5 在for循环中使用range()函数 / 53
2.5.6 break语句 / 54
2.5.7 continue语句 / 55
2.5.8 pass语句 / 56
2.6 Python的特征数据类型 / 57
2.6.1 列表 / 57
2.6.2 元组 / 61
2.6.3 字典 / 63
2.6.4 集合 / 64
2.7 Python的函数 / 67
2.7.1 函数的定义与调用 / 67
2.7.2 参数传递 / 69
2.7.3 匿名函数 / 71
2.7.4 变量作用域 / 72
2.8 Python的面向对象 / 73
2.8.1 面向对象概念 / 73
2.8.2 类与实例 / 74
2.8.3 模块的引用 / 77
2.9 Python的代码格式 / 78
2.9.1 代码缩进 / 78
2.9.2 代码注释 / 79
2.9.3 空行 / 79
2.9.4 同一行显示多条语句 / 79
第3章 人工智能的Numpy 包 / 81
3.1 初识Numpy包 / 82
3.2 ndarray数组基础 / 82
3.2.1 创建Numpy数组 / 83
3.2.2 Numpy特殊数组 / 86
3.2.3 Numpy序列数组 / 90
3.2.4 Numpy数组索引 / 91
3.2.5 Numpy数组运算 / 92
3.2.6 Numpy数组复制 / 93
3.3 Numpy的矩阵 / 94
3.4 Numpy的线性代数 / 96
3.4.1 两个数组的点积 / 96
3.4.2 两个向量的点积 / 97
3.4.3 一维数组的向量内积 / 97
3.4.4 矩阵的行列式 / 98
3.4.5 矩阵的逆 / 100
3.5 Numpy的文件操作 / 101
第4章 人工智能的Pandas 包 / 105
4.1 Pandas的数据结构 / 106
4.2 一维数组系列(Series) / 106
4.2.1 创建一个空的系列(Series) / 106
4.2.2 从ndarray创建一个系列(Series) / 107
4.2.3 从字典创建一个系列(Series) / 109
4.2.4 从有位置的系列(Series)中访问数据 / 109
4.2.5 使用
导语
人工智能+量化交易,未来金融市场的趋势
机构和大户的工具,“散户赚钱是偶然,机构和大户赚钱是必然”的结果
揭示智能量化交易实战精髓,新手交易获利更容易
详解智能量化交易实战应用难题,多位专家合力编著
内容推荐
本书首先讲解人工智能的基础知识,即什么是人工智能,为什么要学习人工智能,什么是智能,智能类型,人工智能的研究与应用领域,为什么使用Python 来开发人工智能,利用量化交易平台编写Python 程序,人工智能的发展历史;然后讲解Python 编程基础和人工智能的三个重要的包,即Numpy 包、Pandas 包和Matplotlib 包;接着讲解5 种机器学习算法,即决策树、随机森林、支持向量机(SVM)、朴素贝叶斯和人工智能的神经网络;然后讲解Python 量化交易策略的编写、获取数据函数、Python 基本面量化选股、Python 量化择时的技术指标函数、Python 量化交易策略的回测技巧、Python 量化交易策略的机器学习方法应用;最后讲解Python 量化交易策略的因子分析技巧和Python 量化交易策略实例。
在讲解过程中既考虑读者的学习习惯,又通过具体实例剖析讲解人工智能在量化交易应用中的热点问题、关键问题及种种难题。
本书适用于各种投资者,如股民、期民、中小散户、职业操盘手和专业金融评论人士,更适用于那些有志于在这个充满风险、充满寂寞的征程上默默前行的征战者和屡败屡战、愈挫愈勇并最终战胜失败、战胜自我的勇者。
标签
缩略图
书名 人工智能在量化交易中的应用与实战
副书名
原作名
作者 王征//李晓波
译者
编者
绘者
出版社 中国铁道出版社
商品编码(ISBN) 9787113257842
开本 16开
页数 409
版次 1
装订 平装
字数 495
出版时间 2019-07-01
首版时间 2019-07-01
印刷时间 2019-07-01
正文语种
读者对象
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类 经济金融-金融会计-金融
图书小类
重量 584
CIP核字 2019091679
中图分类号 F830.91-39
丛书名
印张 26.75
印次 1
出版地 北京
整理
媒质
用纸
是否注音
影印版本
出版商国别
是否套装
著作权合同登记号
版权提供者
定价
印数
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/15 3:25:34