首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 数据科学实战手册(第2版)
内容
目录
第1章 准备数据科学环境
1.1 理解数据科学管道
1.1.1 操作流程
1.1.2 工作原理
1.2 在Windows、Mac OS X和Linux上安装R
1.2.1 准备工作
1.2.2 操作流程
1.2.3 工作原理
1.3 在R和RStudio中安装扩展包
1.3.1 准备工作
1.3.2 操作流程
1.3.3 工作原理
1.3.4 更多内容
1.4 在Linux和Mac OS X上安装Python
1.4.1 准备工作
1.4.2 操作流程
1.4.3 工作原理
1.5 在Windows上安装Python
1.5.1 操作流程
1.5.2 工作原理
1.6 在Mac OS X和Linux上安装Python数据库
1.6.1 准备工作
1.6.2 操作流程
1.6.3 工作原理
1.6.4 更多内容
1.7 安装更多Python包
1.7.1 准备工作
1.7.2 操作流程
1.7.3 工作原理
1.7.4 更多内容
1.8 安装和使用virtualenv
1.8.1 准备工作
1.8.2 操作流程
1.8.3 工作原理
1.8.4 更多内容
第2章 基于R的汽车数据可视化分析
2.1 简介
2.2 获取汽车燃料效率数据
2.2.1 准备工作
2.2.2 操作流程
2.2.3 工作原理
2.3 为你的第 一个分析项目准备好R
2.3.1 准备工作
2.3.2 操作流程
2.3.3 更多内容
2.4 将汽车燃料效率数据导入R
2.4.1 准备工作
2.4.2 操作流程
2.4.3 工作原理
2.4.4 更多内容
2.5 探索并描述燃料效率数据
2.5.1 准备工作
2.5.2 操作流程
2.5.3 工作原理
2.5.4 更多内容
2.6 分析汽车燃料效率数据随时间的变化情况
2.6.1 准备工作
2.6.2 操作流程
2.6.3 工作原理
2.6.4 更多内容
2.7 研究汽车的品牌和型号
2.7.1 准备工作
2.7.2 操作流程
2.7.3 工作原理
2.7.4 更多内容
第3章 基于Python的税收数据应用导向分析
3.1 简介
3.2 高收入数据分析的准备工作
3.2.1 准备工作
3.2.2 操作流程
3.2.3 工作原理
3.3 导入并探索性地分析世界高收入数据集
3.3.1 准备工作
3.3.2 操作流程
3.3.3 工作原理
3.3.4 更多内容
3.4 分析并可视化美国高收入数据
3.4.1 准备工作
3.4.2 操作流程
3.4.3 工作原理
3.5 进一步分析美国高收入群体
3.5.1 准备工作
3.5.2 操作流程
3.5.3 工作原理
3.6 使用Jinja2汇报结果
3.6.1 准备工作
3.6.2 操作流程
3.6.3 工作原理
3.6.4 更多内容
3.7 基于R的数据分析再实现
3.7.1 准备工作
3.7.2 操作流程
3.7.3 更多内容
第4章 股市数据建模
4.1 简介
4.2 获取股市数据
4.3 描述数据
4.3.1 准备工作
4.3.2 操作流程
4.3.3 工作原理
4.3.4 更多内容
4.4 清洗并探索性地分析数据
4.4.1 准备工作
4.4.2 操作流程
4.4.3 工作原理
4.5 生成相对估值
4.5.1 准备工作
4.5.2 操作流程
4.5.3 工作原理
4.6 筛选股票并分析历史价格
4.6.1 准备工作
4.6.2 操作流程
4.6.3 工作原理
第5章 就业数据可视化探索
5.1 简介
5.2 分析前的准备工作
5.2.1 准备工作
5.2.2 操作流程
5.2.3 工作原理
5.3 将就业数据导入R
5.3.1 准备工作
5.3.2 操作流程
5.3.3 工作原理
5.3.4 更多内容
5.4 探索就业数据
5.4.1 准备工作
5.4.2 操作流程
5.4.3 工作原理
5.5 获取、合并附加数据
5.5.1 准备工作
5.5.2 操作流程
5.5.3 工作原理
5.6 添加地理信息
5.6.1 准备工作
5.6.2 操作流程
5.6.3 工作原理
5.7 提取州和县级水平的薪资及就业信息
5.7.1 准备工作
5.7.2 操作流程
5.7.3 工作原理
5.8 可视化薪资的地理分布
5.8.1 准备工作
5.8.2 操作流程
5.8.3 工作原理
5.9 分行业探索就业机会的地理分布
5.9.1 操作流程
5.9.2 工作原理
5.9.3 更多内容
5.10 绘制地理时间序列的动画地图
5.10.1 准备工作
5.10.2 操作流程
5.10.3 工作原理
5.10.4 更多内容
5.11 函数基本性能测试
5.11.1 准备工作
5.11.2 操作流程
5.11.3 工作原理
5.11.4 更多内容
第6章 汽车数据可视化(基于Python)
6.1 简介
6.2 IPython入门
6.2.1 准备工作
6.2.2 操作流程
6.2.3 工作原理
6.3 熟悉Jupyter Notebook
6.3.1 准备工作
6.3.2 操作流程
6.3.3 工作原理
6.3.4 更多内容
6.4 为分析汽车燃料效率做好准备
6.4.1 准备工作
6.4.2 操作流
内容推荐
普拉罕·塔塔、托尼·奥赫达、肖恩·帕特里克·墨菲、本杰明·本福特、阿比吉特·达斯古普塔著的《数据科学实战手册(第2版)》对想学习数据分析的人来说是一本非常实用的参考书,书中有多个真实的数据分析案例,几乎是以手把手的方式教你一步一步地完成从数据分析的准备到分析结果报告的整个流程。无论是数据分析工作的从业者,还是有志于未来从事数据分析工作的在校大学生,都能从本书中获取一些新知识、新思想。
同时,本书也是一本学习和提高R及Python编程的参考书。很多人有这样的感触,单纯地学习编程语言是很枯燥的过程,但利用本书学习R和Python语言可以很好地解决这个问题,生动实用的数据集以及非常有意思的分析结果会极大地激发读者学习的兴趣。
本书案例包括汽车数据分析、税收数据分析、就业数据分析、股市数据分析、社交网络分析、大规模电影推荐、Twitter数据分析、新西兰海外游客预测分析以及德国信用数据分析等。
标签
缩略图
书名 数据科学实战手册(第2版)
副书名
原作名
作者 (印)普拉罕·塔塔//(美)托尼·奥赫达//肖恩·帕特里克·墨菲//本杰明·本福特//阿比吉特·达斯古普塔
译者 译者:刘旭华//李晗//闫晗
编者
绘者
出版社 人民邮电出版社
商品编码(ISBN) 9787115499257
开本 16开
页数 304
版次 1
装订 平装
字数 386
出版时间 2019-01-01
首版时间 2019-01-01
印刷时间 2019-01-01
正文语种
读者对象 普通大众
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类
图书小类
重量 606
CIP核字 2018244894
中图分类号 TP311.56-62
丛书名
印张 20.5
印次 1
出版地 北京
235
186
17
整理
媒质
用纸
是否注音
影印版本
出版商国别 CN
是否套装
著作权合同登记号 图字01-2017-3661号
版权提供者 Packt Publishing公司授权
定价
印数 2400
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/15 7:24:35