首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 基于进化算法的本体匹配技术(英文版)
内容
目录
Chapter 1 Evolutionary Algorithm based Ontology Schema-level Matching Technique
1.1 Preliminaries
1.1.1 Ontology, Ontology Matching, Ontology Alignment
1.1.2 Similarity Measure
1.2 Optimizing Ontology Alignments through Memetic Algorithm Using both MatchFmeasure and Unanimous Improvement Ratio
1.2.1 MatchFmeasure and Unanimous Improvement Ratio
1.2.2 MA Using MatchFmeasure and UIR
1.2.3 Experimental Results and Analysis
1.2.4 Conclusion and Future Work
1.3 Using Problem-speciˉc MOEA/D for Optimizing Ontology Alignments
1.3.1 Multi-Objective Ontology Matching Problem
1.3.2 MOEA/D for Optimizing Ontology Alignments
1.3.3 Experimental Results and Analysis
1.3.4 Conclusion and Future Work
Chapter 2 Evolutionary Algorithm based Ontology Instance-level Matching Technique
2.1 Using Memetic Algorithm for Instance Coreference Resolution
2.1.1 Similarity Measure for Instance Coreference Resolution
2.1.2 Memetic Algorithm for Instance Coreference Resolution
2.1.3 Experimental Results and Analysis
2.1.4 Conclusion and Future Work
2.2 Many-Objective Instance Matching in Linked Open Data
2.2.1 Many-Objective Instance Matching
2.2.2 NSGA-III based Many-Objective Instance Matching
2.2.3 Experimental Studies and Analysis
2.2.4 Conclusion and Future Work
Chapter 3 Improving the Performance of Evolutionary Algorithm based Ontology Matching Technique
3.1 An Alignment-Oriented Segmenting Approach for Optimizing Large Scale Ontology Alignments
3.1.1 The Framework of Segment-based Large Scale Ontology Matching Approach
3.1.2 Source Ontology Partition
3.1.3 Target Ontology Segment Determination
3.1.4 Ontology Segment Matching through the Hybrid Evolutionary Algorithm
3.1.5 Experimental Results and Analysis
3.1.6 Conclusion
3.2 E±cient Ontology Matching Using Meta-Model assisted NSGA-II
3.2.1 Error Ratio based Dynamic Alignment Candidates Selection Strategy
3.2.2 NSGA-II for Optimizing Ontology Alignment
3.2.3 Gaussian Random Field Model
3.2.4 Experimental Results and Analysis
3.2.5 Conclusion and Future Work
3.3 Using Compact Memetic Algorithm for Optimizing Ontology Alignment
3.3.1 Hybrid Population-based Incremental Learning Algorithm
3.3.2 Experimental Studies and Analysis
3.3.3 Conclusion and Future Work
Reference
内容推荐
薛醒思、陈俊风、潘正祥主编的《基于进化算法的本体匹配技术(英文版)》描述了领域间的概念以及概念间的关系,是解决语义网上数据异质问题的方案。但是由于人类的主观性,同一个实体在不同本体中可能拥有不同的名称和描述方式,使得本体间存在异质问题。给定两个描述一系列离散的实体(实体可能是概念、关系和实例)的本体,确定这些本体间的关系的过程称为本体匹配,本体匹配可以有效地解决本体异质问题。当本体中的实体规模庞大的时候,本体匹配问题是一个复杂的(非线性问题且有很多局部最优解)和费时的(大规模问题)问题,因此近似的求解方法通常被用于确定本体匹配结果。源自这一观点,进化算法成为了求解本体匹配问题的有效方法。本书首先为本体概念层和实例层构建了不同的单目标、多目标和众目标模型,然后针对性地给出了各种进化算法(如混合进化算法,NSGA-II和MOEA/D)来求解这些模型。最后,还描述了各种提高基于进化算法的本体匹配技术性能的方法,如本体划分算法、紧凑编码方案、并行匹配框架和元模型辅助策略等,这些方法可以显著地减少运行时、内存消耗和算法所需的评价次数。
标签
缩略图
书名 基于进化算法的本体匹配技术(英文版)
副书名
原作名
作者 薛醒思//陈俊风//潘正祥
译者
编者 薛醒思//陈俊风//潘正祥
绘者
出版社 科学出版社
商品编码(ISBN) 9787030601933
开本 16开
页数 114
版次 1
装订 平装
字数
出版时间 2018-01-01
首版时间 2018-01-01
印刷时间 2018-01-01
正文语种
读者对象 普通大众
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类
图书小类
重量 208
CIP核字
中图分类号 TP301.6
丛书名
印张 7.13
印次 1
出版地 北京
239
169
6
整理
媒质
用纸
是否注音
影印版本
出版商国别 CN
是否套装
著作权合同登记号
版权提供者
定价
印数
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/5 7:03:27