首页  软件  游戏  图书  电影  电视剧

请输入您要查询的图书:

 

图书 Python机器学习(第2版影印版)(英文版)
内容
内容推荐
机器学习正在蚕食软件世界。在这本Sebastian Raschka的畅销书《Python机器学习(第二版)》中,你将了解并学习到机器学习、神经网络和深度学习的最前沿知识。
塞巴斯蒂安·拉施卡、瓦希德·麦加利利著的《Python机器学习》更新并扩展了包括scikit-learn、Keras、TensorFlow在内的最新开源技术。书中提供了使用Python创建有效的机器学习和深度学习应用所需的实用知识和技术。
在涉及数据分析的高级主题之前,Sebastian Raschka和Vahid Mirjalili以其独特见解和专业知识为你介绍机器学习和深度学习算法。本书将机器学习的理论原理与实际编码方法相结合,以求全面掌握机器学习理论及其Python实现。
目录
Preface
Chapter 1: Giving Computers the Ability_ to Learn from Data
Building intelligent machines to transform data into knowledge
The three different types of machine learning
Making predictions about the future with supervised learning
Classification for predicting class labels
Regression for predicting continuous outcomes
Solving interactive problems with reinforcement learning
Discovering hidden structures with unsupervised learning
Finding subgroups with clustering
Dimensionality reduction for data compression
Introduction to the basic terminology and notations
A roadmap for building machine learning systems
Preprocessing - getting data into shape
Training and selecting a predictive model
Evaluating models and predicting unseen data instances
Using Python for machine learning
Installing Python and packages from the Python Package Index
Using the Anaconda Python distribution and package manager
Packages for scientific computing, data science, and machine learning
Summary
Chapter 2: Training Simple Machine Learning Algorithms
for Classification
Artificial neurons - a brief glimpse into the early history of
machine learning
The formal definition of an artificial neuron
The perceptron learning rule
Implementing a perceptron learning algorithm in Python
An object-oriented perceptron API
Training a perceptron model on the Iris dataset
Adaptive linear neurons and the convergence of learning
Minimizing cost functions with gradient descent
Implementing Adaline in Python
Improving gradient descent through feature scaling
Large-scale machine learning and stochastic gradient descent
Summary
Chapter 3: A Tour of Machine Learning Classifiers
Using scikit-learn
Choosing a classification algorithm
First steps with scikit-learn - training a perceptron
Modeling class probabilities via logistic regression
Logistic regression intuition and conditional probabilities
Learning the weights of the logistic cost function
Converting an Adaline implementation into an algorithm for
logistic regression
Training a logistic regression model with scikit-learn
Tackling overfitting via regularization
Maximum margin classification with support vector machines
Maximum margin intuition
Dealing with a nonlinearly separable case using slack variables
Alternative implementations in scikit-learn
Solving nonlinear problems using a kernel SVM
Kernel methods for linearly inseparable data
Using the kernel trick to find separating hyperplanes in
high-dimensional space
Decision tree learning
Maximizing information gain - getting the most bang for your buck
Building a decision tree
Combining multiple decision trees via random forests
K-nearest neighbors - a lazy learning algorithm
Summary
Chapter 4: Building Good Training Sets - Data Preprocessing
Dealing with missing data
Identifying missing values in tabular data
Eliminating samples or features with missing values
Imputing missing values
Understanding the scikit-learn estimator API
……
标签
缩略图
书名 Python机器学习(第2版影印版)(英文版)
副书名
原作名
作者 (美)塞巴斯蒂安·拉施卡//瓦希德·麦加利利
译者
编者
绘者
出版社 东南大学出版社
商品编码(ISBN) 9787564178666
开本 16开
页数 595
版次 1
装订 平装
字数 764
出版时间 2018-10-01
首版时间 2018-10-01
印刷时间 2018-10-01
正文语种
读者对象 普通大众
适用范围
发行范围 公开发行
发行模式 实体书
首发网站
连载网址
图书大类
图书小类
重量 986
CIP核字 2018153453
中图分类号 TP311.561
丛书名
印张 39
印次 1
出版地 江苏
232
186
25
整理
媒质
用纸
是否注音
影印版本
出版商国别 CN
是否套装
著作权合同登记号 图字10-2018-103号
版权提供者
定价
印数
出品方
作品荣誉
主角
配角
其他角色
一句话简介
立意
作品视角
所属系列
文章进度
内容简介
作者简介
目录
文摘
安全警示 适度休息有益身心健康,请勿长期沉迷于阅读小说。
随便看

 

兰台网图书档案馆全面收录古今中外各种图书,详细介绍图书的基本信息及目录、摘要等图书资料。

 

Copyright © 2004-2025 xlantai.com All Rights Reserved
更新时间:2025/5/12 9:39:20